These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 8833070)
1. Influence of the parameters of a human triceps surae muscle model on the isometric torque-angle relationship. Out L; Vrijkotte TG; van Soest AJ; Bobbert MF J Biomech Eng; 1996 Feb; 118(1):17-25. PubMed ID: 8833070 [TBL] [Abstract][Full Text] [Related]
2. Effect of muscle model parameter scaling for isometric plantar flexion torque prediction. Menegaldo LL; de Oliveira LF J Biomech; 2009 Nov; 42(15):2597-601. PubMed ID: 19665714 [TBL] [Abstract][Full Text] [Related]
3. A comparison of electrical activity in the triceps surae at maximum isometric contraction with the knee and ankle at various angles. Miaki H; Someya F; Tachino K Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):185-91. PubMed ID: 10453919 [TBL] [Abstract][Full Text] [Related]
4. Evidence for intermuscle difference in slack angle in human triceps surae. Hirata K; Kanehisa H; Miyamoto-Mikami E; Miyamoto N J Biomech; 2015 Apr; 48(6):1210-3. PubMed ID: 25682539 [TBL] [Abstract][Full Text] [Related]
5. Effect of series elasticity on isokinetic torque-angle relationship in humans. Kawakami Y; Kubo K; Kanehisa H; Fukunaga T Eur J Appl Physiol; 2002 Aug; 87(4-5):381-7. PubMed ID: 12172877 [TBL] [Abstract][Full Text] [Related]
6. Effects of series elasticity on the human knee extension torque-angle relationship in vivo. Kubo K; Ohgo K; Takeishi R; Yoshinaga K; Tsunoda N; Kanehisa H; Fukunaga T Res Q Exerc Sport; 2006 Dec; 77(4):408-16. PubMed ID: 17243216 [TBL] [Abstract][Full Text] [Related]
7. A Monte Carlo analysis of muscle force estimation sensitivity to muscle-tendon properties using a Hill-based muscle model. Bujalski P; Martins J; Stirling L J Biomech; 2018 Oct; 79():67-77. PubMed ID: 30146173 [TBL] [Abstract][Full Text] [Related]
8. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion. Mademli L; Arampatzis A; Morey-Klapsing G; Brüggemann GP J Electromyogr Kinesiol; 2004 Oct; 14(5):591-7. PubMed ID: 15301777 [TBL] [Abstract][Full Text] [Related]
9. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model. de Oliveira LF; Menegaldo LL J Biomech; 2010 Oct; 43(14):2816-21. PubMed ID: 20541763 [TBL] [Abstract][Full Text] [Related]
10. Knee and ankle joint torque-angle relationships of multi-joint leg extension. Hahn D; Olvermann M; Richtberg J; Seiberl W; Schwirtz A J Biomech; 2011 Jul; 44(11):2059-65. PubMed ID: 21621211 [TBL] [Abstract][Full Text] [Related]
11. From twitch to tetanus for human muscle: experimental data and model predictions for m. triceps surae. van Zandwijk JP; Bobbert MF; Harlaar J; Hof AL Biol Cybern; 1998 Aug; 79(2):121-30. PubMed ID: 9791932 [TBL] [Abstract][Full Text] [Related]
12. Neuromechanical properties of the triceps surae in young and older adults. Barber LA; Barrett RS; Gillett JG; Cresswell AG; Lichtwark GA Exp Gerontol; 2013 Nov; 48(11):1147-55. PubMed ID: 23886750 [TBL] [Abstract][Full Text] [Related]
13. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping. Robertson BD; Sawicki GS J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822 [TBL] [Abstract][Full Text] [Related]
14. Relationship between muscle length and moment arm on EMG activity of human triceps surae muscle. Nourbakhsh MR; Kukulka CG J Electromyogr Kinesiol; 2004 Apr; 14(2):263-73. PubMed ID: 14962779 [TBL] [Abstract][Full Text] [Related]
15. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Kubo K; Ohgo K; Takeishi R; Yoshinaga K; Tsunoda N; Kanehisa H; Fukunaga T Scand J Med Sci Sports; 2006 Jun; 16(3):159-67. PubMed ID: 16643193 [TBL] [Abstract][Full Text] [Related]
16. Doublet potentiation in the triceps surae is limited by series compliance and dynamic fascicle behavior. Mayfield DL; Lichtwark GA; Cronin NJ; Avela J; Cresswell AG J Appl Physiol (1985); 2015 Oct; 119(7):807-16. PubMed ID: 26251512 [TBL] [Abstract][Full Text] [Related]
17. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981 [TBL] [Abstract][Full Text] [Related]
18. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. Maganaris CN; Baltzopoulos V; Sargeant AJ J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):603-14. PubMed ID: 9763648 [TBL] [Abstract][Full Text] [Related]
19. Simulation of in situ soleus isometric force output as a function of neural excitation. Legreneur P; Morlon B; Van Hoecke J J Biomech; 1996 Nov; 29(11):1455-62. PubMed ID: 8894926 [TBL] [Abstract][Full Text] [Related]
20. Mechanical and morphological properties of the triceps surae muscle-tendon unit in old and young adults and their interaction with a submaximal fatiguing contraction. Mademli L; Arampatzis A J Electromyogr Kinesiol; 2008 Feb; 18(1):89-98. PubMed ID: 17126033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]