These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Specificity of cell-cell coupling in rat optic nerve astrocytes in vitro. Sontheimer H; Minturn JE; Black JA; Waxman SG; Ransom BR Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9833-7. PubMed ID: 2263634 [TBL] [Abstract][Full Text] [Related]
5. Brain extracellular space: developmental studies in rat optic nerve. Ransom BR; Carlini WG; Connors BW Ann N Y Acad Sci; 1986; 481():87-105. PubMed ID: 3468868 [TBL] [Abstract][Full Text] [Related]
6. Ionic changes and alterations in the size of the extracellular space during epileptic activity. Lux HD; Heinemann U; Dietzel I Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349 [TBL] [Abstract][Full Text] [Related]
7. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Orkand RK; Nicholls JG; Kuffler SW J Neurophysiol; 1966 Jul; 29(4):788-806. PubMed ID: 5966435 [No Abstract] [Full Text] [Related]
8. Electrogenic pumps in axons and neuroglia and extracellular potassium homeostasis. Tang CM; Cohen MW; Orkand RK Brain Res; 1980 Jul; 194(1):283-6. PubMed ID: 6247038 [No Abstract] [Full Text] [Related]
9. Anoxia-induced extracellular ionic changes in CNS white matter: the role of glial cells. Ransom BR; Philbin DM Can J Physiol Pharmacol; 1992; 70 Suppl():S181-9. PubMed ID: 1295669 [TBL] [Abstract][Full Text] [Related]
10. A further study of the fine structure and membrane properties of neuroglia in the optic nerve of Necturus. Bracho H; Orkand PM; Orkand RK J Neurobiol; 1975 Jul; 6(4):395-410. PubMed ID: 1181380 [TBL] [Abstract][Full Text] [Related]
11. Membrane properties of neuroglia in the optic nerve of Necturus. Orkand RK; Orkand PM; Tang CM J Exp Biol; 1981 Dec; 95():49-59. PubMed ID: 6278045 [TBL] [Abstract][Full Text] [Related]
12. Effects of altered gliogenesis on activity-dependent K+ accumulation in the developing rat optic nerve. Yamate CL; Ransom BR Brain Res; 1985 Aug; 353(2):167-73. PubMed ID: 2412654 [TBL] [Abstract][Full Text] [Related]
13. Physiological properties of glial cells in the central nervous system of amphibia. Kuffler SW; Nicholls JG; Orkand RK J Neurophysiol; 1966 Jul; 29(4):768-87. PubMed ID: 5966434 [No Abstract] [Full Text] [Related]
15. Optical recording of electrical activity from axons and glia of frog optic nerve: potentiometric dye responses and morphometrics. Konnerth A; Orkand PM; Orkand RK Glia; 1988; 1(3):225-32. PubMed ID: 2852172 [TBL] [Abstract][Full Text] [Related]
16. Nervous function at the cellular level: glia. Lasansky A Annu Rev Physiol; 1971; 33():241-56. PubMed ID: 4377647 [No Abstract] [Full Text] [Related]
17. Some physiological properties of identified mammalian neuroglial cells. Dennis MJ; Gerschenfeld HM J Physiol; 1969 Jul; 203(1):211-22. PubMed ID: 5821876 [TBL] [Abstract][Full Text] [Related]
18. Morphology and intercellular communication in glial cells of intramural ganglia from the guinea-pig urinary bladder. Hanani M; Maudlej N; Härtig W J Auton Nerv Syst; 1999 Apr; 76(1):62-7. PubMed ID: 10323307 [TBL] [Abstract][Full Text] [Related]
19. Potassium currents in cultured glia of the frog optic nerve. Philippi M; Vyklicky L; Orkand RK Glia; 1996 May; 17(1):72-82. PubMed ID: 8723844 [TBL] [Abstract][Full Text] [Related]
20. Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. Ransom BR; Yamate CL; Connors BW J Neurosci; 1985 Feb; 5(2):532-5. PubMed ID: 3973681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]