These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8833218)

  • 1. Is the Mg(2+)-ATP-dependent proton pumping activity of the synaptic vesicles a factor involved in the cerebral hypoxia?
    Benzi G; Gorini A; Ghigini B; Moretti A; Dagani F; Villa RF
    Neurochem Res; 1996 Jan; 21(1):7-18. PubMed ID: 8833218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a H+-ATPase in rat brain synaptic vesicles. Coupling to L-glutamate transport.
    Cidon S; Sihra TS
    J Biol Chem; 1989 May; 264(14):8281-8. PubMed ID: 2566604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related alterations by chronic intermittent hypoxia on cerebral synaptosomal ATPase activities.
    Benzi G; Gorini A; Arnaboldi R; Ghigini B; Villa RF
    J Neural Transm Suppl; 1994; 44():159-71. PubMed ID: 7897388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate uptake into synaptic vesicles of bovine cerebral cortex and electrochemical potential difference of proton across the membrane.
    Shioi J; Naito S; Ueda T
    Biochem J; 1989 Mar; 258(2):499-504. PubMed ID: 2565109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH.
    Tabb JS; Kish PE; Van Dyke R; Ueda T
    J Biol Chem; 1992 Aug; 267(22):15412-8. PubMed ID: 1353494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes by hypoxia and TRH analogue on synaptic ATPase activities.
    Benzi G; Gorini A; Arnaboldi R; Ghigini B; Villa RF
    Neurobiol Aging; 1994; 15(4):409-17. PubMed ID: 7969717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.
    Moriyama Y; Maeda M; Futai M
    J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications by hypoxia and drug treatment of cerebral ATPase plasticity.
    Benzi G; Gorini A; Ghigini B; Arnaboldi R; Villa RF
    Neurochem Res; 1994 Apr; 19(4):517-24. PubMed ID: 8065506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.
    Roz N; Rehavi M
    Life Sci; 2003 Jun; 73(4):461-70. PubMed ID: 12759140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptosomal non-mitochondrial ATPase activities: age-related alterations by chronic normobaric intermittent hypoxia.
    Benzi G; Gorini A; Arnaboldi R; Ghigini B; Villa RF
    Neurochem Int; 1994 Jul; 25(1):61-7. PubMed ID: 7950972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-dependent accumulation of neuron blockers causes selective inhibition of neurotransmitter uptake by brain synaptic vesicles.
    Moriyama Y; Tsai HL; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):278-81. PubMed ID: 8373165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of intermittent mild hypoxia and drug treatment on synaptosomal nonmitochondrial ATPase activities.
    Benzi G; Gorini A; Arnaboldi R; Ghigini B; Villa R
    J Neurosci Res; 1993 Apr; 34(6):654-63. PubMed ID: 8315664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl- gradients but requires a source of counter-transportable H+.
    Dixon DA; Haynes DH
    J Membr Biol; 1989 Dec; 112(2):169-83. PubMed ID: 2560063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evidence for the presence of H+-ATPase in the membrane of brain synaptic vesicles in the rat].
    Glebov RN; Mel'nik VI; Kryzhanovskiĭ GN
    Biull Eksp Biol Med; 1984 Nov; 98(11):539-41. PubMed ID: 6150734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mg2+/Ca(2+)-ATPase activity is not enriched in synaptic vesicles isolated from rat cerebral cortex.
    Rodríguez de Lores Arnaiz G; Pellegrino de Iraldi A
    Neurochem Res; 1997 Mar; 22(3):293-6. PubMed ID: 9051664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [ATP-dependent proton translocation across the synaptic vesicle membrane in the brain of rats].
    Mel'nik VI; Glebov RN; Kryzhanovskiĭ GN
    Biull Eksp Biol Med; 1985 Jan; 99(1):35-8. PubMed ID: 2981577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia added in vitro, but not moderate hyperammonemia in vivo, stimulates glutamate uptake and H(+)-ATPase activity in synaptic vesicles of the rat brain.
    Albrecht J; Hilgier W; Walski M
    Metab Brain Dis; 1994 Sep; 9(3):257-66. PubMed ID: 7838067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATPases of synaptic plasma membranes and vesicles from rat cerebral cortex during aging and hypoxia.
    Villa RF; D'Angelo A; Gorini A
    Ann N Y Acad Sci; 1999; 893():417-20. PubMed ID: 10672280
    [No Abstract]   [Full Text] [Related]  

  • 20. Norepinephrine uptake dependent upon apparent Mg++-ATPase activity and proton transport in storage vesicles in axoplasm.
    Bogdanski DF
    Synapse; 1988; 2(4):424-31. PubMed ID: 2973143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.