BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8834003)

  • 1. Functional characterization and localization of a cardiac-type inwardly rectifying K+ channel.
    Iizuka M; Kubo Y; Tsunenari I; Pan CX; Akiba I; Kono T
    Recept Channels; 1995; 3(4):299-315. PubMed ID: 8834003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes.
    Hedin KE; Lim NF; Clapham DE
    Neuron; 1996 Feb; 16(2):423-9. PubMed ID: 8789957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins.
    Krapivinsky G; Gordon EA; Wickman K; Velimirović B; Krapivinsky L; Clapham DE
    Nature; 1995 Mar; 374(6518):135-41. PubMed ID: 7877685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels.
    Ferrer J; Nichols CG; Makhina EN; Salkoff L; Bernstein J; Gerhard D; Wasson J; Ramanadham S; Permutt A
    J Biol Chem; 1995 Nov; 270(44):26086-91. PubMed ID: 7592809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating.
    Kubo Y; Iizuka M
    Biochem Biophys Res Commun; 1996 Oct; 227(1):240-7. PubMed ID: 8858132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of coupling of muscarinic receptor isoforms to a novel chick inward-rectifying acetylcholine-sensitive K+ channel.
    Gadbut AP; Riccardi D; Wu L; Hebert SC; Galper JB
    J Biol Chem; 1996 Mar; 271(11):6398-402. PubMed ID: 8626438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.
    Kubo Y; Reuveny E; Slesinger PA; Jan YN; Jan LY
    Nature; 1993 Aug; 364(6440):802-6. PubMed ID: 8355805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel.
    Velimirovic BM; Gordon EA; Lim NF; Navarro B; Clapham DE
    FEBS Lett; 1996 Jan; 379(1):31-7. PubMed ID: 8566224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits.
    Kennedy ME; Nemec J; Clapham DE
    Neuropharmacology; 1996; 35(7):831-9. PubMed ID: 8938714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers.
    Kofuji P; Davidson N; Lester HA
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6542-6. PubMed ID: 7604029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel.
    Doupnik CA; Lim NF; Kofuji P; Davidson N; Lester HA
    J Gen Physiol; 1995 Jul; 106(1):1-23. PubMed ID: 7494135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes.
    Yakubovich D; Pastushenko V; Bitler A; Dessauer CW; Dascal N
    J Physiol; 2000 May; 524 Pt 3(Pt 3):737-55. PubMed ID: 10790155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cardiac inward rectifier K+ channel subunit, CIR, does not comprise the ATP-sensitive K+ channel, IKATP.
    Krapivinsky G; Krapivinsky L; Velimirovic B; Wickman K; Navarro B; Clapham DE
    J Biol Chem; 1995 Dec; 270(48):28777-9. PubMed ID: 7499400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G beta gamma directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1.
    Inanobe A; Morishige KI; Takahashi N; Ito H; Yamada M; Takumi T; Nishina H; Takahashi K; Kanaho Y; Katada T
    Biochem Biophys Res Commun; 1995 Jul; 212(3):1022-8. PubMed ID: 7626088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of an epitope-tagged G protein-coupled K+ channel (GIRK1).
    Philipson LH; Kuznetsov A; Toth PT; Murphy JF; Szabo G; Ma GH; Miller RJ
    J Biol Chem; 1995 Jun; 270(24):14604-10. PubMed ID: 7540174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3.
    Jelacic TM; Sims SM; Clapham DE
    J Membr Biol; 1999 May; 169(2):123-9. PubMed ID: 10341034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in GIRK1/GIRK2 deactivation kinetics and basal activity in the presence and absence of RGS4.
    Ulens C; Daenens P; Tytgat J
    Life Sci; 2000 Sep; 67(19):2305-17. PubMed ID: 11065178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A region of the muscarinic-gated atrial K+ channel critical for activation by G protein beta gamma subunits.
    Takao K; Yoshii M; Kanda A; Kokubun S; Nukada T
    Neuron; 1994 Sep; 13(3):747-55. PubMed ID: 7917304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.