BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8834303)

  • 1. Selective labeling of [3H]2-deoxy-D-glucose in the snake trigeminal system: basal and infrared-stimulated conditions.
    Jiang PJ; Terashima S
    Somatosens Mot Res; 1995; 12(3-4):299-307. PubMed ID: 8834303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial sharpening by second-order trigeminal neurons in crotaline infrared system.
    Stanford LR; Hartline PH
    Brain Res; 1980 Mar; 185(1):115-23. PubMed ID: 7353171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox).
    Kohl T; Bothe MS; Luksch H; Straka H; Westhoff G
    J Comp Neurol; 2014 Dec; 522(18):3943-59. PubMed ID: 24989331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The infrared trigemino-tectal pathway in the rattlesnake and in the python.
    Newman EA; Gruberg ER; Hartline PH
    J Comp Neurol; 1980 Jun; 191(3):465-77. PubMed ID: 7410602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ascending projection of the nucleus of the lateral descending trigeminal tract: a nucleus in the infrared system of the rattlesnake, Crotalus viridis.
    Stanford LR; Schroeder DM; Hartline PH
    J Comp Neurol; 1981 Sep; 201(2):161-73. PubMed ID: 7287924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal integration in primary trigeminal nucleus of rattlesnake infrared system.
    Stanford LR; Hartline PH
    J Neurophysiol; 1984 May; 51(5):1077-90. PubMed ID: 6726312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.
    Bothe MS; Luksch H; Straka H; Kohl T
    Curr Biol; 2019 Jun; 29(11):1827-1832.e4. PubMed ID: 31104931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure and organization of the infrared receptor relay, the lateral descending nucleus of the trigeminal nerve in pit vipers.
    Meszler RM; Auker CR; Carpenter DO
    J Comp Neurol; 1981 Mar; 196(4):571-84. PubMed ID: 7204672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substance P-like immunoreactive fibers in the trigeminal sensory nuclei of the pit viper, Trimeresurus flavoviridis.
    Terashima S
    Neuroscience; 1987 Nov; 23(2):685-91. PubMed ID: 2449633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization of the delta subspecies of protein kinase C in the trigeminal sensory system of Trimeresurus flavoviridis, an infrared-sensitive snake.
    Moon C; Terashima S; Shin T
    Neurosci Lett; 2003 Mar; 338(3):233-6. PubMed ID: 12581839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine structure and organization of the infrared receptor relays: lateral descending nucleus of V in Boidae and nucleus reticularis caloris in the rattlesnake.
    Meszler RM
    J Comp Neurol; 1983 Nov; 220(3):299-309. PubMed ID: 6643729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substance P-like immunoreactivity in the trigeminal sensory nuclei of an infrared-sensitive snake, Agkistrodon blomhoffi.
    Kadota T; Kishida R; Goris RC; Kusunoki T
    Cell Tissue Res; 1988 Aug; 253(2):311-7. PubMed ID: 2457445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit.
    Donga R; Lund JP
    J Neurophysiol; 1991 Nov; 66(5):1564-78. PubMed ID: 1765794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central projections of the sensory innervation to the middle cerebral artery in the squirrel monkey.
    Arbab MA; Delgado-Zygmunt TJ; Shiokawa Y; Svendgaard NA
    Acta Neurochir (Wien); 1992; 119(1-4):104-10. PubMed ID: 1481736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central projections of identified trigeminal primary afferents after molar pulp deafferentation in adult rats.
    Shortland PJ; Jacquin MF; DeMaro JA; Kwan CL; Hu JW; Sessle BJ
    Somatosens Mot Res; 1995; 12(3-4):277-97. PubMed ID: 8834302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trigeminal nerve branches containing primary afferent fibers to the dorsal division of the principal sensory trigeminal nucleus: a transganglionic horseradish peroxidase study in the cat.
    Nomura S; Yasui Y; Takada M; Konishi A; Mizuno N
    Neurosci Lett; 1986 May; 66(2):221-5. PubMed ID: 3725187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sensory trigeminal complex and the organization of its primary afferents in the zebra finch (Taeniopygia guttata).
    Faunes M; Wild JM
    J Comp Neurol; 2017 Sep; 525(13):2820-2831. PubMed ID: 28542900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vagal afferent C fibers projecting to the lateral descending trigeminal complex of crotaline snakes.
    Kishida R; Yoshimoto M; Kusunoki T; Goris RC; Terashima S
    Exp Brain Res; 1984; 53(2):315-9. PubMed ID: 6200350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central connections of trigeminal primary afferent neurons: topographical and functional considerations.
    Capra NF; Dessem D
    Crit Rev Oral Biol Med; 1992; 4(1):1-52. PubMed ID: 1457683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.