BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 8834733)

  • 1. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of structural compliance on cavitation threshold measurement of mechanical heart valves.
    Guo GX; Adlparvar P; Howanec M; Roy J; Kafesjian R; Kingsbury C
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S77-83; discussion S83-4. PubMed ID: 8061872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of an acoustic technique to detect cavitation produced by a tilting disc valve.
    Herman BA; Porter JM; Carey RF
    J Heart Valve Dis; 1996 Jan; 5(1):90-6. PubMed ID: 8834731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.
    Lo CW; Liu JS; Li CP; Lu PC; Hwang NH
    ASAIO J; 2008; 54(2):163-71. PubMed ID: 18356649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of cavitation bubbles in monoleaflet mechanical heart valves.
    Lee H; Tsukiya T; Homma A; Kamimura T; Takewa Y; Tatsumi E; Taenaka Y; Takano H; Kitamura S
    J Artif Organs; 2004; 7(3):121-7. PubMed ID: 15558332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indication of cavitation in mechanical heart valve patients.
    Andersen TS; Johansen P; Paulsen PK; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2003 Nov; 12(6):790-6. PubMed ID: 14658822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves.
    Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation of mechanical heart valves under physiologic conditions.
    Graf T; Reul H; Dietz W; Wilmes R; Rau G
    J Heart Valve Dis; 1992 Sep; 1(1):131-41. PubMed ID: 1341216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect.
    Lee CS; Chandran KB; Chen LD
    J Biomech Eng; 1996 Feb; 118(1):97-105. PubMed ID: 8833080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.