BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8834811)

  • 1. The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila.
    Straub KL; Stella MC; Leptin M
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():263-70. PubMed ID: 8834811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and mutational analysis of a gelsolin-family member encoded by the flightless I gene of Drosophila melanogaster.
    de Couet HG; Fong KS; Weeds AG; McLaughlin PJ; Miklos GL
    Genetics; 1995 Nov; 141(3):1049-59. PubMed ID: 8582612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fliih, a gelsolin-related cytoskeletal regulator essential for early mammalian embryonic development.
    Campbell HD; Fountain S; McLennan IS; Berven LA; Crouch MF; Davy DA; Hooper JA; Waterford K; Chen KS; Lupski JR; Ledermann B; Young IG; Matthaei KI
    Mol Cell Biol; 2002 May; 22(10):3518-26. PubMed ID: 11971982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flightless I protein localizes to actin-based structures during embryonic development.
    Davy DA; Ball EE; Matthaei KI; Campbell HD; Crouch MF
    Immunol Cell Biol; 2000 Aug; 78(4):423-9. PubMed ID: 10947868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation.
    Grosshans J; Wenzl C; Herz HM; Bartoszewski S; Schnorrer F; Vogt N; Schwarz H; Müller HA
    Development; 2005 Mar; 132(5):1009-20. PubMed ID: 15689371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop out: a third chromosome maternal-effect locus required for formation of the Drosophila cellular blastoderm.
    Galewsky S; Schulz RA
    Mol Reprod Dev; 1992 Aug; 32(4):331-8. PubMed ID: 1497881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.
    Meng J; Stephenson EC
    Dev Genes Evol; 2002 Jun; 212(5):239-47. PubMed ID: 12070614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases.
    Davy DA; Campbell HD; Fountain S; de Jong D; Crouch MF
    J Cell Sci; 2001 Feb; 114(Pt 3):549-62. PubMed ID: 11171324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction.
    Claudianos C; Campbell HD
    Mol Biol Evol; 1995 May; 12(3):405-14. PubMed ID: 7739382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos.
    Stevenson V; Hudson A; Cooley L; Theurkauf WE
    Curr Biol; 2002 Apr; 12(9):705-11. PubMed ID: 12007413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo.
    Sherlekar A; Rikhy R
    Mol Biol Cell; 2016 Jul; 27(13):2064-79. PubMed ID: 27146115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo.
    Schejter ED; Wieschaus E
    Cell; 1993 Oct; 75(2):373-85. PubMed ID: 8402919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutation in dVps28 reveals a link between a subunit of the endosomal sorting complex required for transport-I complex and the actin cytoskeleton in Drosophila.
    Sevrioukov EA; Moghrabi N; Kuhn M; Krämer H
    Mol Biol Cell; 2005 May; 16(5):2301-12. PubMed ID: 15728719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Activities of the Gelsolin Homology Domains of Flightless-I in Actin Dynamics.
    Pintér R; Huber T; Bukovics P; Gaszler P; Vig AT; Tóth MÁ; Gazsó-Gerhát G; Farkas D; Migh E; Mihály J; Bugyi B
    Front Mol Biosci; 2020; 7():575077. PubMed ID: 33033719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development.
    Afshar K; Stuart B; Wasserman SA
    Development; 2000 May; 127(9):1887-97. PubMed ID: 10751177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport.
    Hain D; Langlands A; Sonnenberg HC; Bailey C; Bullock SL; Müller HA
    Development; 2014 May; 141(10):2119-30. PubMed ID: 24803657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the binding partners for flightless I, A novel protein bridging the leucine-rich repeat and the gelsolin superfamilies.
    Liu YT; Yin HL
    J Biol Chem; 1998 Apr; 273(14):7920-7. PubMed ID: 9525888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and dynamics of slam in furrow formation in early Drosophila embryo.
    Acharya S; Laupsien P; Wenzl C; Yan S; Großhans J
    Dev Biol; 2014 Feb; 386(2):371-84. PubMed ID: 24368071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans.
    Campbell HD; Schimansky T; Claudianos C; Ozsarac N; Kasprzak AB; Cotsell JN; Young IG; de Couet HG; Miklos GL
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11386-90. PubMed ID: 8248259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo.
    Padash Barmchi M; Rogers S; Häcker U
    J Cell Biol; 2005 Feb; 168(4):575-85. PubMed ID: 15699213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.