These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8835367)

  • 1. The contribution of lysosomal trapping in the uptake of desipramine and chloroquine by different tissues.
    Daniel WA; Bickel MH; Honegger UE
    Pharmacol Toxicol; 1995 Dec; 77(6):402-6. PubMed ID: 8835367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosomal trapping as an important mechanism involved in the cellular distribution of perazine and in pharmacokinetic interaction with antidepressants.
    Daniel WA; Wójcikowski J
    Eur Neuropsychopharmacol; 1999 Dec; 9(6):483-91. PubMed ID: 10625116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lysosomes in the cellular distribution of thioridazine and potential drug interactions.
    Daniel WA; Wójcikowski J
    Toxicol Appl Pharmacol; 1999 Jul; 158(2):115-24. PubMed ID: 10406926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs.
    Daniel WA; Wójcikowski J
    Pharmacol Toxicol; 1997 Feb; 80(2):62-8. PubMed ID: 9060036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions.
    Daniel WA
    Prog Neuropsychopharmacol Biol Psychiatry; 2003 Feb; 27(1):65-73. PubMed ID: 12551728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between promazine and antidepressants at the level of cellular distribution.
    Daniel WA; Wójcikowski J
    Pharmacol Toxicol; 1997 Dec; 81(6):259-64. PubMed ID: 9444666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping.
    Daniel WA; Wójcikowski J; Pałucha A
    Br J Pharmacol; 2001 Oct; 134(4):807-14. PubMed ID: 11606321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for lysosomotropic action of desipramine in cultured human fibroblasts.
    Honegger UE; Roscher AA; Wiesmann UN
    J Pharmacol Exp Ther; 1983 May; 225(2):436-41. PubMed ID: 6221090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adipose tissue distribution and chemical structure of basic lipophilic drugs: desipramine, N-acetyl desipramine, and haloperidol.
    Moor MJ; Steiner SH; Jachertz G; Bickel MH
    Pharmacol Toxicol; 1992 Feb; 70(2):121-4. PubMed ID: 1508837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically Based Pharmacokinetics of Lysosomotropic Chloroquine in Rat and Human.
    Liu X; Jusko WJ
    J Pharmacol Exp Ther; 2021 Feb; 376(2):261-272. PubMed ID: 33277347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of LysoTracker Red uptake by in vitro model cells of the outer blood-retinal barrier: Implication of lysosomal trapping with cytoplasmic vacuolation and cytotoxicity.
    Tega Y; Takeuchi T; Nagano M; Makino R; Kubo Y; Akanuma SI; Hosoya KI
    Drug Metab Pharmacokinet; 2023 Aug; 51():100510. PubMed ID: 37451173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of chloroquine uptake into isolated rat hepatocytes.
    MacIntyre AC; Cutler DJ
    J Pharm Sci; 1993 Jun; 82(6):592-600. PubMed ID: 8331532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a beta 3-adrenergic agonist, BRL35135A, on glucose uptake in rat skeletal muscle in vivo and in vitro.
    Abe H; Minokoshi Y; Shimazu T
    J Endocrinol; 1993 Dec; 139(3):479-86. PubMed ID: 7907647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat tissue concentrations of chlorimipramine, chlorpromazine and their N-demethylated metabolites after a single oral dose of the parent compounds.
    Sgaragli GP; Valoti M; Palmi M; Frosini M; Giovannini MG; Bianchi L; Della Corte L
    J Pharm Pharmacol; 1995 Sep; 47(9):782-90. PubMed ID: 8583393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipose tissue storage of drugs as a function of binding competition. In-vitro studies with distribution dialysis.
    Minder S; Daniel WA; Clausen J; Bickel MH
    J Pharm Pharmacol; 1994 Apr; 46(4):313-5. PubMed ID: 7914229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in-vitro study of chloroquine transport in the rat submaxillary gland.
    Onyeji CO; Dixon PA; Ogunbona FA
    J Pharm Pharmacol; 1992 Feb; 44(2):136-8. PubMed ID: 1352817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs.
    Assmus F; Houston JB; Galetin A
    Eur J Pharm Sci; 2017 Nov; 109():419-430. PubMed ID: 28823852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of phospholipid storage induced by amantadine and chloroquine in Madin Darby canine kidney cells.
    Hostetler KY; Richman DD
    Biochem Pharmacol; 1982 Dec; 31(23):3795-9. PubMed ID: 7159462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices.
    Bartucci R; Paramanandana A; Boersma YL; Olinga P; Salvati A
    Nanotoxicology; 2020 Aug; 14(6):847-865. PubMed ID: 32536243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence of specific 11C-meta-Hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue.
    Thackeray JT; Beanlands RS; Dasilva JN
    J Nucl Med; 2007 Oct; 48(10):1733-40. PubMed ID: 17873125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.