BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8835721)

  • 21. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Anat Rec; 1998 Aug; 251(4):528-47. PubMed ID: 9713988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origins of descending projections to the lumbar spinal cord at different stages of development in the North American opossum.
    Martin GF; Pindzola RR; Xu XM
    Brain Res Bull; 1993; 30(3-4):303-17. PubMed ID: 8457879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental plasticity of selected spinocerebellar axons. Studies using the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1997 Sep; 102(2):309-14. PubMed ID: 9352116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The origin of serotoninergic projections to the lumbosacral spinal cord at different stages of development in the North American opossum.
    Martin GF; Ghooray G; Ho RH; Pindzola RR; Xu XM
    Brain Res Dev Brain Res; 1991 Feb; 58(2):203-13. PubMed ID: 1851469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Holst MC; Ho RH; Martin GF
    Brain Behav Evol; 1991; 38(6):273-89. PubMed ID: 1684917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections.
    Henkel CK; Martin GF
    J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery from spinal transection in fish: regrowth of axons past the transection.
    Coggeshall RE; Youngblood CS
    Neurosci Lett; 1983 Aug; 38(3):227-31. PubMed ID: 6633929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.
    Martin GF; Cabana T; Ditirro FJ; Ho RH; Humbertson AO
    J Comp Neurol; 1982 Jun; 208(1):67-84. PubMed ID: 6749912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The origin of projections from the medullary reticular formation to the spinal cord, the diencephalon and the cerebellum at different stages of development in the North American opossum: studies using single and double labeling techniques.
    Martin GF; Cabana T; Waltzer R
    Neuroscience; 1988 Apr; 25(1):87-96. PubMed ID: 3393288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronically injured supraspinal neurons exhibit only modest axonal dieback in response to a cervical hemisection lesion.
    Houle JD; Jin Y
    Exp Neurol; 2001 May; 169(1):208-17. PubMed ID: 11312573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis.
    Davis BM; Ayers JL; Koran L; Carlson J; Anderson MC; Simpson SB
    Exp Neurol; 1990 Jun; 108(3):198-213. PubMed ID: 2351209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.
    Wheaton BJ; Callaway JK; Ek CJ; Dziegielewska KM; Saunders NR
    PLoS One; 2011; 6(11):e26826. PubMed ID: 22073202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.
    Saunders NR; Kitchener P; Knott GW; Nicholls JG; Potter A; Smith TJ
    J Neurosci; 1998 Jan; 18(1):339-55. PubMed ID: 9412512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural circuitry of the adult rat central nervous system after spinal cord injury: a study using fast blue and the Bartha strain of pseudorabies virus.
    Kim ES; Kim GM; Lu X; Hsu CY; Xu XM
    J Neurotrauma; 2002 Jun; 19(6):787-800. PubMed ID: 12165138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo.
    Shiga T; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Mar; 305(1):83-95. PubMed ID: 1709651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.