BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8835918)

  • 1. Nodal Na(+)-channel displacement is associated with nerve-conduction slowing in the chronically diabetic BB/W rat: prevention by aldose reductase inhibition.
    Cherian PV; Kamijo M; Angelides KJ; Sima AA
    J Diabetes Complications; 1996; 10(4):192-200. PubMed ID: 8835918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventive effect of long-term aldose reductase inhibition (ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic Bio-Breeding rat.
    Sima AA; Prashar A; Zhang WX; Chakrabarti S; Greene DA
    J Clin Invest; 1990 May; 85(5):1410-20. PubMed ID: 2110189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axo-glial dysjunction. A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic bio-breeding rat.
    Sima AA; Lattimer SA; Yagihashi S; Greene DA
    J Clin Invest; 1986 Feb; 77(2):474-84. PubMed ID: 3003160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide.
    Sima AA; Zhang W; Li ZG; Murakawa Y; Pierson CR
    Diabetes; 2004 Jun; 53(6):1556-63. PubMed ID: 15161761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldose reductase inhibition alters nodal Na+ currents and nerve conduction in human diabetics.
    Misawa S; Kuwabara S; Kanai K; Tamura N; Nakata M; Sawai S; Yagui K; Hattori T
    Neurology; 2006 May; 66(10):1545-9. PubMed ID: 16717216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers.
    Susuki K; Baba H; Tohyama K; Kanai K; Kuwabara S; Hirata K; Furukawa K; Furukawa K; Rasband MN; Yuki N
    Glia; 2007 May; 55(7):746-57. PubMed ID: 17352383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of sorbitol accumulation and myo-inositol depletion in paranodal swelling of large myelinated nerve fibers in the insulin-deficient spontaneously diabetic bio-breeding rat. Reversal by insulin replacement, an aldose reductase inhibitor, and myo-inositol.
    Greene DA; Chakrabarti S; Lattimer SA; Sima AA
    J Clin Invest; 1987 May; 79(5):1479-85. PubMed ID: 3033025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imbalances in N-CAM, SAM and polysialic acid may underlie the paranodal ion channel barrier defect in diabetic neuropathy.
    Merry AC; Yamamoto K; Sima AA
    Diabetes Res Clin Pract; 1998 Jun; 40(3):153-60. PubMed ID: 9716918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overt diabetic neuropathy: repair of axo-glial dysjunction and axonal atrophy by aldose reductase inhibition and its correlation to improvement in nerve conduction velocity.
    Sima AA; Prashar A; Nathaniel V; Bril V; Werb MR; Greene DA
    Diabet Med; 1993 Mar; 10(2):115-21. PubMed ID: 8458187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W-rat.
    Kamijo M; Cherian PV; Sima AA
    Diabetologia; 1993 Oct; 36(10):893-8. PubMed ID: 8243866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats.
    Brown AA; Xu T; Arroyo EJ; Levinson SR; Brophy PJ; Peles E; Scherer SS
    J Neurosci Res; 2001 Jul; 65(2):139-49. PubMed ID: 11438983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy.
    Kamijo M; Basso M; Cherian PV; Hohman TC; Sima AA
    Diabetes Res Clin Pract; 1994 Sep; 25(2):117-29. PubMed ID: 7821191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term aldose reductase inhibition on development of experimental diabetic neuropathy. Ultrastructural and morphometric studies of sural nerve in streptozocin-induced diabetic rats.
    Yagihashi S; Kamijo M; Ido Y; Mirrlees DJ
    Diabetes; 1990 Jun; 39(6):690-6. PubMed ID: 2140802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of nodal constriction on conduction velocity in myelinated nerve fibers.
    Halter JA; Clark JW
    Neuroreport; 1993 Jan; 4(1):89-92. PubMed ID: 8384020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve fiber regeneration following axotomy in the diabetic biobreeding Worcester rat: the effect of ARI treatment.
    Kamijo M; Merry AC; Akdas G; Cherian PV; Sima AA
    J Diabetes Complications; 1996; 10(4):183-91. PubMed ID: 8835917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple functions of the paranodal junction of myelinated nerve fibers.
    Rosenbluth J
    J Neurosci Res; 2009 Nov; 87(15):3250-8. PubMed ID: 19224642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible diabetic nerve dysfunction: structural correlates to electrophysiological abnormalities.
    Sima AA; Brismar T
    Ann Neurol; 1985 Jul; 18(1):21-9. PubMed ID: 3898998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodal gap substance in diabetic nerve.
    Seneviratne KN; Weerasuriya A
    J Neurol Neurosurg Psychiatry; 1974 May; 37(5):502-13. PubMed ID: 4276085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible and irreversible nodal dysfunction in diabetic neuropathy.
    Brismar T; Sima AA; Greene DA
    Ann Neurol; 1987 May; 21(5):504-7. PubMed ID: 2438993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating perinodal changes observed in immune-mediated neuropathies: impact on conduction in a model of myelinated motor and sensory axons.
    Sleutjes BTHM; Kovalchuk MO; Durmus N; Buitenweg JR; van Putten MJAM; van den Berg LH; Franssen H
    J Neurophysiol; 2019 Sep; 122(3):1036-1049. PubMed ID: 31291151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.