BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8836198)

  • 21. Typing of food-borne Listeria monocytogenes by polymerase chain reaction-restriction enzyme analysis and amplified fragment length polymorphism.
    Mikasová E; Oravcová K; Kaclíková E; Kuchta T; Drahovská H
    New Microbiol; 2005 Jul; 28(3):265-70. PubMed ID: 16240700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig and human sources.
    Leung KT; Mackereth R; Tien YC; Topp E
    FEMS Microbiol Ecol; 2004 Jan; 47(1):111-9. PubMed ID: 19712352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of simple and rapid PCR-fingerprinting methods for Vibrio cholerae on the basis of genetic diversity of the superintegron.
    Chowdhury N; Asakura M; Neogi SB; Hinenoya A; Haldar S; Ramamurthy T; Sarkar BL; Faruque SM; Yamasaki S
    J Appl Microbiol; 2010 Jul; 109(1):304-12. PubMed ID: 20070445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence analysis of the gene encoding H antigen in Escherichia coli isolated from food in Morocco.
    Badri S; Fassouane A; Filliol I; Hassar M; Cohen N
    J Microbiol; 2010 Apr; 48(2):184-7. PubMed ID: 20437150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AFLP markers for DNA fingerprinting in cattle.
    Ajmone-Marsan P; Valentini A; Cassandro M; Vecchiotti-Antaldi G; Bertoni G; Kuiper M
    Anim Genet; 1997 Dec; 28(6):418-26. PubMed ID: 9589583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AFLP typing of Staphylococcus epidermidis in multiple sequential blood cultures.
    Sloos JH; Janssen P; van Boven CP; Dijkshoorn L
    Res Microbiol; 1998 Mar; 149(3):221-8. PubMed ID: 9766224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates.
    Keto-Timonen RO; Autio TJ; Korkeala HJ
    Syst Appl Microbiol; 2003 Jun; 26(2):236-44. PubMed ID: 12866850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level.
    Jarocki P; Podleśny M; Komoń-Janczara E; Kucharska J; Glibowska A; Targoński Z
    BMC Microbiol; 2016 Jul; 16(1):159. PubMed ID: 27449060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution genotyping of Salmonella strains by AFLP-fingerprinting.
    Aarts HJ; van Lith LA; Keijer J
    Lett Appl Microbiol; 1998 Feb; 26(2):131-5. PubMed ID: 9569696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species.
    Gancheva A; Pot B; Vanhonacker K; Hoste B; Kersters K
    Syst Appl Microbiol; 1999 Dec; 22(4):573-85. PubMed ID: 10794146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting.
    Gnat S; Małek W; Oleńska E; Trościańczyk A; Wdowiak-Wróbel S; Kalita M; Wójcik M
    J Appl Genet; 2015 Nov; 56(4):551-554. PubMed ID: 25929993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacterial strains.
    Wang G; Whittam TS; Berg CM; Berg DE
    Nucleic Acids Res; 1993 Dec; 21(25):5930-3. PubMed ID: 8290354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A variation of the amplified-fragment length polymorphism (AFLP) technique using three restriction endonucleases, and assessment of the enzyme combination BglII-MfeI for AFLP analysis of Salmonella enterica subsp. enterica isolates.
    Lindstedt BA; Heir E; Vardund T; Kapperud G
    FEMS Microbiol Lett; 2000 Aug; 189(1):19-24. PubMed ID: 10913860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of cDNA-AFLP experiments using genomic sequence data.
    Kivioja T; Arvas M; Saloheimo M; Penttilä M; Ukkonen E
    Bioinformatics; 2005 Jun; 21(11):2573-9. PubMed ID: 15774551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism.
    Jonas D; Spitzmüller B; Daschner FD; Verhoef J; Brisse S
    Res Microbiol; 2004; 155(1):17-23. PubMed ID: 14759704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism.
    Klaassen CH; van Haren HA; Horrevorts AM
    J Clin Microbiol; 2002 Jan; 40(1):101-4. PubMed ID: 11773100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study using amplified fragment length polymorphism fingerprinting, PCR genotyping, and phenotyping to differentiate Campylobacter fetus strains isolated from animals.
    Wagenaar JA; van Bergen MA; Newell DG; Grogono-Thomas R; Duim B
    J Clin Microbiol; 2001 Jun; 39(6):2283-6. PubMed ID: 11376071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simplified AFLP protocol: replacement of primer labeling by the incorporation of alpha-labeled nucleotides during PCR.
    Reineke A; Karlovsky P
    Biotechniques; 2000 Apr; 28(4):622-3. PubMed ID: 10769736
    [No Abstract]   [Full Text] [Related]  

  • 39. Usefulness of self ligation mediated polymerase chain reaction: a rapid method for fingerprinting in molecular epidemiology of tuberculosis.
    Ruhul A; Suzuki Y; Takatorige T; Tatara K; Shirakura R
    Kekkaku; 2001 Jan; 76(1):9-18. PubMed ID: 11211782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplified fragment-length polymorphism analysis.
    Fry NK; Savelkoul PH; Visca P
    Methods Mol Biol; 2009; 551():89-104. PubMed ID: 19521869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.