These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8836198)
21. Typing of food-borne Listeria monocytogenes by polymerase chain reaction-restriction enzyme analysis and amplified fragment length polymorphism. Mikasová E; Oravcová K; Kaclíková E; Kuchta T; Drahovská H New Microbiol; 2005 Jul; 28(3):265-70. PubMed ID: 16240700 [TBL] [Abstract][Full Text] [Related]
22. A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig and human sources. Leung KT; Mackereth R; Tien YC; Topp E FEMS Microbiol Ecol; 2004 Jan; 47(1):111-9. PubMed ID: 19712352 [TBL] [Abstract][Full Text] [Related]
23. Development of simple and rapid PCR-fingerprinting methods for Vibrio cholerae on the basis of genetic diversity of the superintegron. Chowdhury N; Asakura M; Neogi SB; Hinenoya A; Haldar S; Ramamurthy T; Sarkar BL; Faruque SM; Yamasaki S J Appl Microbiol; 2010 Jul; 109(1):304-12. PubMed ID: 20070445 [TBL] [Abstract][Full Text] [Related]
24. Sequence analysis of the gene encoding H antigen in Escherichia coli isolated from food in Morocco. Badri S; Fassouane A; Filliol I; Hassar M; Cohen N J Microbiol; 2010 Apr; 48(2):184-7. PubMed ID: 20437150 [TBL] [Abstract][Full Text] [Related]
25. AFLP markers for DNA fingerprinting in cattle. Ajmone-Marsan P; Valentini A; Cassandro M; Vecchiotti-Antaldi G; Bertoni G; Kuiper M Anim Genet; 1997 Dec; 28(6):418-26. PubMed ID: 9589583 [TBL] [Abstract][Full Text] [Related]
26. AFLP typing of Staphylococcus epidermidis in multiple sequential blood cultures. Sloos JH; Janssen P; van Boven CP; Dijkshoorn L Res Microbiol; 1998 Mar; 149(3):221-8. PubMed ID: 9766224 [TBL] [Abstract][Full Text] [Related]
27. An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates. Keto-Timonen RO; Autio TJ; Korkeala HJ Syst Appl Microbiol; 2003 Jun; 26(2):236-44. PubMed ID: 12866850 [TBL] [Abstract][Full Text] [Related]
28. Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level. Jarocki P; Podleśny M; Komoń-Janczara E; Kucharska J; Glibowska A; Targoński Z BMC Microbiol; 2016 Jul; 16(1):159. PubMed ID: 27449060 [TBL] [Abstract][Full Text] [Related]
29. High-resolution genotyping of Salmonella strains by AFLP-fingerprinting. Aarts HJ; van Lith LA; Keijer J Lett Appl Microbiol; 1998 Feb; 26(2):131-5. PubMed ID: 9569696 [TBL] [Abstract][Full Text] [Related]
30. A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Gancheva A; Pot B; Vanhonacker K; Hoste B; Kersters K Syst Appl Microbiol; 1999 Dec; 22(4):573-85. PubMed ID: 10794146 [TBL] [Abstract][Full Text] [Related]
31. Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting. Gnat S; Małek W; Oleńska E; Trościańczyk A; Wdowiak-Wróbel S; Kalita M; Wójcik M J Appl Genet; 2015 Nov; 56(4):551-554. PubMed ID: 25929993 [TBL] [Abstract][Full Text] [Related]
32. RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacterial strains. Wang G; Whittam TS; Berg CM; Berg DE Nucleic Acids Res; 1993 Dec; 21(25):5930-3. PubMed ID: 8290354 [TBL] [Abstract][Full Text] [Related]
33. A variation of the amplified-fragment length polymorphism (AFLP) technique using three restriction endonucleases, and assessment of the enzyme combination BglII-MfeI for AFLP analysis of Salmonella enterica subsp. enterica isolates. Lindstedt BA; Heir E; Vardund T; Kapperud G FEMS Microbiol Lett; 2000 Aug; 189(1):19-24. PubMed ID: 10913860 [TBL] [Abstract][Full Text] [Related]
34. Optimization of cDNA-AFLP experiments using genomic sequence data. Kivioja T; Arvas M; Saloheimo M; Penttilä M; Ukkonen E Bioinformatics; 2005 Jun; 21(11):2573-9. PubMed ID: 15774551 [TBL] [Abstract][Full Text] [Related]
35. Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism. Jonas D; Spitzmüller B; Daschner FD; Verhoef J; Brisse S Res Microbiol; 2004; 155(1):17-23. PubMed ID: 14759704 [TBL] [Abstract][Full Text] [Related]
36. Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism. Klaassen CH; van Haren HA; Horrevorts AM J Clin Microbiol; 2002 Jan; 40(1):101-4. PubMed ID: 11773100 [TBL] [Abstract][Full Text] [Related]
37. Comparative study using amplified fragment length polymorphism fingerprinting, PCR genotyping, and phenotyping to differentiate Campylobacter fetus strains isolated from animals. Wagenaar JA; van Bergen MA; Newell DG; Grogono-Thomas R; Duim B J Clin Microbiol; 2001 Jun; 39(6):2283-6. PubMed ID: 11376071 [TBL] [Abstract][Full Text] [Related]
38. Simplified AFLP protocol: replacement of primer labeling by the incorporation of alpha-labeled nucleotides during PCR. Reineke A; Karlovsky P Biotechniques; 2000 Apr; 28(4):622-3. PubMed ID: 10769736 [No Abstract] [Full Text] [Related]
39. Usefulness of self ligation mediated polymerase chain reaction: a rapid method for fingerprinting in molecular epidemiology of tuberculosis. Ruhul A; Suzuki Y; Takatorige T; Tatara K; Shirakura R Kekkaku; 2001 Jan; 76(1):9-18. PubMed ID: 11211782 [TBL] [Abstract][Full Text] [Related]