These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 8836205)
1. Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. Parham K; Zhao HB; Kim DO J Neurophysiol; 1996 Jul; 76(1):17-29. PubMed ID: 8836205 [TBL] [Abstract][Full Text] [Related]
2. Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Parham K; Zhao HB; Ye Y; Kim DO Hear Res; 1998 Nov; 125(1-2):131-46. PubMed ID: 9833967 [TBL] [Abstract][Full Text] [Related]
3. Responses of auditory nerve fibers to trains of clicks. Wickesberg RE; Stevens HE J Acoust Soc Am; 1998 Apr; 103(4):1990-9. PubMed ID: 9566321 [TBL] [Abstract][Full Text] [Related]
4. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones. Kim DO; Parham K; Sirianni JG; Chang SO J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624 [TBL] [Abstract][Full Text] [Related]
5. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve. Sinex DG; Havey DC J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187 [TBL] [Abstract][Full Text] [Related]
6. Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum. Kim DO; Sirianni JG; Chang SO Hear Res; 1990 Apr; 45(1-2):95-113. PubMed ID: 2345121 [TBL] [Abstract][Full Text] [Related]
7. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Heil P; Irvine DR J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395 [TBL] [Abstract][Full Text] [Related]
8. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones. Kim DO; Chang SO; Sirianni JG J Acoust Soc Am; 1990 Apr; 87(4):1648-55. PubMed ID: 2341668 [TBL] [Abstract][Full Text] [Related]
9. Recovery of human compound action potential using a paired-click stimulation paradigm. Ohashi T; Ochi K; Nishino H; Kenmochi M; Yoshida K Hear Res; 2005 May; 203(1-2):192-200. PubMed ID: 15855044 [TBL] [Abstract][Full Text] [Related]
10. Age-related loss of activity of auditory-nerve fibers. Schmiedt RA; Mills JH; Boettcher FA J Neurophysiol; 1996 Oct; 76(4):2799-803. PubMed ID: 8899648 [TBL] [Abstract][Full Text] [Related]
11. Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. Guinan JJ; Stankovic KM J Acoust Soc Am; 1996 Sep; 100(3):1680-90. PubMed ID: 8817894 [TBL] [Abstract][Full Text] [Related]
12. Auditory nerve spatial encoding of high-frequency pure tones: population response profiles derived from d' measure associated with nearby places along the cochlea. Kim DO; Parham K Hear Res; 1991 Mar; 52(1):167-79. PubMed ID: 2061204 [TBL] [Abstract][Full Text] [Related]
13. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals. Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458 [TBL] [Abstract][Full Text] [Related]
14. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve. Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Rhode WS; Smith PH Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298 [TBL] [Abstract][Full Text] [Related]
16. Neural encoding of single-formant stimuli in the cat. II. Responses of anteroventral cochlear nucleus units. Wang X; Sachs MB J Neurophysiol; 1994 Jan; 71(1):59-78. PubMed ID: 8158242 [TBL] [Abstract][Full Text] [Related]
17. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. Kawase T; Liberman MC J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596 [TBL] [Abstract][Full Text] [Related]
18. Representation of a low-frequency tone in the discharge rate of populations of auditory nerve fibers. Shofner WP; Sachs MB Hear Res; 1986; 21(1):91-5. PubMed ID: 3957799 [TBL] [Abstract][Full Text] [Related]
19. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Cariani PA; Delgutte B J Neurophysiol; 1996 Sep; 76(3):1698-716. PubMed ID: 8890286 [TBL] [Abstract][Full Text] [Related]
20. Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat. Kuwabara N; Suga N J Neurophysiol; 1993 May; 69(5):1713-24. PubMed ID: 8389837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]