BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 8836205)

  • 1. Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes.
    Parham K; Zhao HB; Kim DO
    J Neurophysiol; 1996 Jul; 76(1):17-29. PubMed ID: 8836205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes.
    Parham K; Zhao HB; Ye Y; Kim DO
    Hear Res; 1998 Nov; 125(1-2):131-46. PubMed ID: 9833967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of auditory nerve fibers to trains of clicks.
    Wickesberg RE; Stevens HE
    J Acoust Soc Am; 1998 Apr; 103(4):1990-9. PubMed ID: 9566321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve.
    Sinex DG; Havey DC
    J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power-spectrum.
    Kim DO; Sirianni JG; Chang SO
    Hear Res; 1990 Apr; 45(1-2):95-113. PubMed ID: 2345121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Chang SO; Sirianni JG
    J Acoust Soc Am; 1990 Apr; 87(4):1648-55. PubMed ID: 2341668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of human compound action potential using a paired-click stimulation paradigm.
    Ohashi T; Ochi K; Nishino H; Kenmochi M; Yoshida K
    Hear Res; 2005 May; 203(1-2):192-200. PubMed ID: 15855044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related loss of activity of auditory-nerve fibers.
    Schmiedt RA; Mills JH; Boettcher FA
    J Neurophysiol; 1996 Oct; 76(4):2799-803. PubMed ID: 8899648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers.
    Guinan JJ; Stankovic KM
    J Acoust Soc Am; 1996 Sep; 100(3):1680-90. PubMed ID: 8817894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory nerve spatial encoding of high-frequency pure tones: population response profiles derived from d' measure associated with nearby places along the cochlea.
    Kim DO; Parham K
    Hear Res; 1991 Mar; 52(1):167-79. PubMed ID: 2061204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals.
    Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural encoding of single-formant stimuli in the cat. II. Responses of anteroventral cochlear nucleus units.
    Wang X; Sachs MB
    J Neurophysiol; 1994 Jan; 71(1):59-78. PubMed ID: 8158242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of a low-frequency tone in the discharge rate of populations of auditory nerve fibers.
    Shofner WP; Sachs MB
    Hear Res; 1986; 21(1):91-5. PubMed ID: 3957799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience.
    Cariani PA; Delgutte B
    J Neurophysiol; 1996 Sep; 76(3):1698-716. PubMed ID: 8890286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat.
    Kuwabara N; Suga N
    J Neurophysiol; 1993 May; 69(5):1713-24. PubMed ID: 8389837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.