BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

917 related articles for article (PubMed ID: 8836211)

  • 21. Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum.
    Keifer J; Houk JC
    J Neurophysiol; 1991 Mar; 65(3):454-67. PubMed ID: 1675669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5089-104. PubMed ID: 8046470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle.
    Stein PS; Camp AW; Robertson GA; Mortin LI
    J Neurosci; 1986 Aug; 6(8):2259-66. PubMed ID: 3746408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Turtle Flexion Reflex Motor Patterns Show Windup, Mediated Partly by L-type Calcium Channels.
    Johnson KP; Tran SM; Siegrist EA; Paidimarri KB; Elson MS; Berkowitz A
    Front Neural Circuits; 2017; 11():83. PubMed ID: 29163064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1394-403. PubMed ID: 9310430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming.
    Samara RF; Currie SN
    J Neurophysiol; 2007 Oct; 98(4):2223-31. PubMed ID: 17715193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat.
    Stecina K; Quevedo J; McCrea DA
    J Physiol; 2005 Nov; 569(Pt 1):275-90. PubMed ID: 16141269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization of hindlimb muscle afferent projections to lumbosacral motoneurons in the chick embryo.
    Lee MT; O'Donovan MJ
    J Neurosci; 1991 Aug; 11(8):2564-73. PubMed ID: 1678428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Step, swim, and scratch motor patterns in the turtle.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Nov; 84(5):2181-90. PubMed ID: 11067964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions.
    Stein PS; Daniels-McQueen S; Lai J; Liu Z; Corman TS
    J Neurophysiol; 2016 Jun; 115(6):3130-9. PubMed ID: 27030737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5105-19. PubMed ID: 8046471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P; Bonnot A; O'Donovan MJ
    J Neurophysiol; 2000 Dec; 84(6):2821-33. PubMed ID: 11110812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The organization of primary afferent depolarization in the isolated spinal cord of the frog.
    Carpenter DO; Rudomin P
    J Physiol; 1973 Mar; 229(2):471-93. PubMed ID: 4541991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat.
    Guertin P; Angel MJ; Perreault MC; McCrea DA
    J Physiol; 1995 Aug; 487(1):197-209. PubMed ID: 7473249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor pattern deletions and modular organization of turtle spinal cord.
    Stein PS
    Brain Res Rev; 2008 Jan; 57(1):118-24. PubMed ID: 17826841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal Interneurons With Dual Axon Projections to Knee-Extensor and Hip-Extensor Motor Pools.
    Nguyen KH; Scheurich TE; Gu T; Berkowitz A
    Front Neural Circuits; 2020; 14():7. PubMed ID: 32226362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord.
    Pinco M; Lev-Tov A
    J Neurophysiol; 1993 Jul; 70(1):406-17. PubMed ID: 8103090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles.
    Guertin PA; Hounsgaard J
    Neurosci Lett; 1998 Mar; 245(1):5-8. PubMed ID: 9596342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal motor patterns in the turtle.
    Stein PS; McCullough ML; Currie SN
    Ann N Y Acad Sci; 1998 Nov; 860():142-54. PubMed ID: 9928308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.