These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
877 related articles for article (PubMed ID: 8836232)
21. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186 [TBL] [Abstract][Full Text] [Related]
22. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. Ohana O; Sakmann B J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):135-48. PubMed ID: 9782165 [TBL] [Abstract][Full Text] [Related]
23. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction. Tanabe N; Kijima H J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356 [TBL] [Abstract][Full Text] [Related]
24. Stimulation-induced changes in [Ca2+] in lizard motor nerve terminals. David G; Barrett JN; Barrett EF J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):83-96. PubMed ID: 9350620 [TBL] [Abstract][Full Text] [Related]
25. Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. Forti L; Pouzat C; Llano I J Physiol; 2000 Aug; 527 Pt 1(Pt 1):33-48. PubMed ID: 10944168 [TBL] [Abstract][Full Text] [Related]
26. Presynaptic calcium signals during neurotransmitter release: detection with fluorescent indicators and other calcium chelators. Augustine GJ; Adler EM; Charlton MP; Hans M; Swandulla D; Zipser K J Physiol Paris; 1992; 86(1-3):129-34. PubMed ID: 1364192 [TBL] [Abstract][Full Text] [Related]
28. Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. Kirischuk S; Clements JD; Grantyn R J Physiol; 2002 Aug; 543(Pt 1):99-116. PubMed ID: 12181284 [TBL] [Abstract][Full Text] [Related]
29. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Kirischuk S; Veselovsky N; Grantyn R Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7520-5. PubMed ID: 10377447 [TBL] [Abstract][Full Text] [Related]
30. Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals. Swandulla D; Hans M; Zipser K; Augustine GJ Neuron; 1991 Dec; 7(6):915-26. PubMed ID: 1662519 [TBL] [Abstract][Full Text] [Related]
32. Characteristics of Ca2+ release induced by Ca2+ influx in cultured bullfrog sympathetic neurones. Hua SY; Nohmi M; Kuba K J Physiol; 1993 May; 464():245-72. PubMed ID: 8229800 [TBL] [Abstract][Full Text] [Related]
33. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Qian J; Saggau P Br J Pharmacol; 1997 Oct; 122(3):511-9. PubMed ID: 9351508 [TBL] [Abstract][Full Text] [Related]
34. Activity-dependent modulation of K+ currents at presynaptic terminals of mammalian central synapses. Qian J; Saggau P J Physiol; 1999 Sep; 519 Pt 2(Pt 2):427-37. PubMed ID: 10457060 [TBL] [Abstract][Full Text] [Related]
35. Modulation of pre- and postsynaptic calcium dynamics by ionotropic glutamate receptors at a plastic synapse. Schwartz NE; Alford S J Neurophysiol; 1998 Apr; 79(4):2191-203. PubMed ID: 9535978 [TBL] [Abstract][Full Text] [Related]
36. Adenosine pre- and postsynaptic modulation of glutamate-dependent calcium activity in hypothalamic neurons. Obrietan K; Belousov AB; Heller HC; van den Pol AN J Neurophysiol; 1995 Nov; 74(5):2150-62. PubMed ID: 8592203 [TBL] [Abstract][Full Text] [Related]
37. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus. Miyazaki K; Ishizuka T; Yawo H Neuroscience; 2005; 136(4):1003-14. PubMed ID: 16226383 [TBL] [Abstract][Full Text] [Related]
38. Sources of electrical transients in tectal neuropil of the frog, Rana pipiens. Grant AC; Lettvin JY Brain Res; 1991 Sep; 560(1-2):106-21. PubMed ID: 1760719 [TBL] [Abstract][Full Text] [Related]
39. Ca2+ dynamics at the frog motor nerve terminal. Suzuki S; Osanai M; Murase M; Suzuki N; Ito K; Shirasaki T; Narita K; Ohnuma K; Kuba K; Kijima H Pflugers Arch; 2000 Jul; 440(3):351-65. PubMed ID: 10954322 [TBL] [Abstract][Full Text] [Related]
40. Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators. Berlin JR; Konishi M Biophys J; 1993 Oct; 65(4):1632-47. PubMed ID: 8274651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]