BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8836433)

  • 1. Location of the beta-galactosidase of the yeast Kluyveromyces marxianus var. marxianus ATCC 10022.
    Bacci Júnior M; Siqueira CG; Antoniazi SA; Ueta J
    Antonie Van Leeuwenhoek; 1996 May; 69(4):357-61. PubMed ID: 8836433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beta-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose.
    Martins DB; de Souza CG; Simões DA; de Morais MA
    Curr Microbiol; 2002 May; 44(5):379-82. PubMed ID: 11927991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic control of lactose entry in Escherichia coli.
    Maloney PC; Wilson TH
    Biochim Biophys Acta; 1978 Aug; 511(3):487-98. PubMed ID: 99173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeabilization of Kluyveromyces marxianus with mild detergent for whey lactose hydrolysis and augmentation of mixed culture.
    Yadav JS; Bezawada J; Yan S; Tyagi RD; Surampalli RY
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3207-22. PubMed ID: 24500798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the hydrolysis of lactose and other substrates by beta-D-galactosidase from Kluyveromyces lactis.
    Kim SH; Lim KP; Kim HS
    J Dairy Sci; 1997 Oct; 80(10):2264-9. PubMed ID: 9361198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes.
    Diniz RH; Silveira WB; Fietto LG; Passos FM
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell disruption optimization and covalent immobilization of beta-D-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk.
    Puri M; Gupta S; Pahuja P; Kaur A; Kanwar JR; Kennedy JF
    Appl Biochem Biotechnol; 2010 Jan; 160(1):98-108. PubMed ID: 19198767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new kinetic model of recombinant beta-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions.
    Kim CS; Ji ES; Oh DK
    Biochem Biophys Res Commun; 2004 Apr; 316(3):738-43. PubMed ID: 15033461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction and general properties of beta-galactosidase and beta-galactoside permease in Pseudomonas BAL-31.
    Hidalgo C; Reyes J; Goldschmidt R
    J Bacteriol; 1977 Feb; 129(2):821-9. PubMed ID: 14111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells.
    Kaur G; Panesar PS; Bera MB; Kumar H
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):63-7. PubMed ID: 18431601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of oligosaccharide synthesis from lactose and lactulose using β-galactosidases from Kluyveromyces isolated from artisanal cheeses.
    Padilla B; Ruiz-Matute AI; Belloch C; Cardelle-Cobas A; Corzo N; Manzanares P
    J Agric Food Chem; 2012 May; 60(20):5134-41. PubMed ID: 22559148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modes of lactose uptake in the yeast species Kluyveromyces marxianus.
    Carvalho-Silva M; Spencer-Martins I
    Antonie Van Leeuwenhoek; 1990 Feb; 57(2):77-81. PubMed ID: 2321931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus.
    Gasnier B
    Biochim Biophys Acta; 1987 Oct; 903(3):425-33. PubMed ID: 3663655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices.
    Kokkiligadda A; Beniwal A; Saini P; Vij S
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1469-84. PubMed ID: 27059625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transport systems in Kluyveromyces marxianus CCT 7735.
    da Silveira FA; Diniz RHS; Sampaio GMS; Brandão RL; da Silveira WB; Castro IM
    Antonie Van Leeuwenhoek; 2019 Feb; 112(2):211-223. PubMed ID: 30132191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551.
    Srivastava A; Mishra S; Chand S
    N Biotechnol; 2015 Jun; 32(4):412-8. PubMed ID: 25976627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphisms in the LAC12 gene explain lactose utilisation variability in Kluyveromyces marxianus strains.
    Varela JA; Montini N; Scully D; Van der Ploeg R; Oreb M; Boles E; Hirota J; Akada R; Hoshida H; Morrissey JP
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28444380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activity of beta-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate.
    Ornelas AP; Silveira WB; Sampaio FC; Passos FM
    J Appl Microbiol; 2008 Apr; 104(4):1008-13. PubMed ID: 17976174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and beta-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure.
    Pinheiro R; Belo I; Mota M
    Lett Appl Microbiol; 2003; 37(6):438-42. PubMed ID: 14633095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.