These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8836831)

  • 21. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion.
    Park JH; Bae YH
    Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.
    Ji J; Zhu H; Shen J
    Biomaterials; 2004 May; 25(10):1859-67. PubMed ID: 14738850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platelet interactions with plasma-polymerized ethylene oxide and N-vinyl-2-pyrrolidone films and linear poly(ethylene oxide) layer.
    Kamath KR; Danilich MJ; Marchant RE; Park K
    J Biomater Sci Polym Ed; 1996; 7(11):977-88. PubMed ID: 8858486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterobifunctional membranes by plasma induced graft polymerization as an artificial organ for penetration keratoprosthesis.
    Chang PC; Lee SD; Hsiue GH
    J Biomed Mater Res; 1998 Mar; 39(3):380-9. PubMed ID: 9468046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes.
    Han DK; Park KD; Ahn KD; Jeong SY; Kim YH
    J Biomed Mater Res; 1989 Apr; 23(A1 Suppl):87-104. PubMed ID: 2722907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silicone elastomers for reduced protein adsorption.
    Chen H; Brook MA; Sheardown H
    Biomaterials; 2004 May; 25(12):2273-82. PubMed ID: 14741592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platelet deposition studies on copolyether urethanes modified with poly(ethylene oxide).
    Brinkman E; Poot A; van der Does L; Bantjes A
    Biomaterials; 1990 Apr; 11(3):200-5. PubMed ID: 2350558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation.
    Ko YG; Kim YH; Park KD; Lee HJ; Lee WK; Park HD; Kim SH; Lee GS; Ahn DJ
    Biomaterials; 2001 Aug; 22(15):2115-23. PubMed ID: 11432591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface modification with PEO-containing triblock copolymer for improved biocompatibility: in vitro and ex vivo studies.
    Kidane A; Lantz GC; Jo S; Park K
    J Biomater Sci Polym Ed; 1999; 10(10):1089-105. PubMed ID: 10591134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biocompatibility of sulfobetaine engineered poly (ethylene terephthalate) by surface entrapment technique.
    Khandwekar AP; Doble M; Patil DP; Shouche YS
    J Biomater Appl; 2010 Aug; 25(2):119-43. PubMed ID: 19749001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility of polysulfone II. Platelet adhesion and cho cell growth.
    Khang G; Jeong BJ; Lee HB; Park JB
    Biomed Mater Eng; 1995; 5(4):259-73. PubMed ID: 8785510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials.
    Desai NP; Hubbell JA
    Biomaterials; 1991 Mar; 12(2):144-53. PubMed ID: 1831675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEO-grafting on PU/PS IPNs for enhanced blood compatibility--effect of pendant length and grafting density.
    Kim JH; Kim SC
    Biomaterials; 2002 May; 23(9):2015-25. PubMed ID: 11996043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of synthesis temperature of PEO-grafted PU/PS IPNs on surface morphology and in vitro blood compatibility.
    Kim JH; Kim SC
    J Biomater Sci Polym Ed; 2003; 14(6):601-14. PubMed ID: 12901441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and surface properties of PEO-sulfonate grafted polyurethanes for enhanced blood compatibility.
    Han DK; Jeong SY; Ahn KD; Kim YH; Min BG
    J Biomater Sci Polym Ed; 1993; 4(6):579-89. PubMed ID: 8280672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.
    Hsu SH; Tang CM; Lin CC
    Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of surface coverage with poly(ethylene oxide) on attachment of sterically stabilized microspheres to rat Kupffer cells in vitro.
    Harper GR; Davis SS; Davies MC; Norman ME; Tadros TF; Taylor DC; Irving MP; Waters JA; Watts JF
    Biomaterials; 1995 Apr; 16(6):427-39. PubMed ID: 7654869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ethylene oxide)-modified carboxylated polystyrene latices--immobilization chemistry and protein adsorption.
    van Delden CJ; Bezemer JM; Engbers GH; Feijen J
    J Biomater Sci Polym Ed; 1996; 8(4):251-68. PubMed ID: 9041040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.