These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 883707)
1. Effect of ruminal lactic acid-utilizing bacteria on adaptation of cattle to high-energy rations. Cook MK; Cooley JH; Edens JD; Goetsch DD; Das NK; Huber TL Am J Vet Res; 1977 Jul; 38(7):1015-7. PubMed ID: 883707 [TBL] [Abstract][Full Text] [Related]
2. Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high-grain ration. Huber TL; Cooley JH; Goetsch DD; Das NK Am J Vet Res; 1976 May; 37(5):611-3. PubMed ID: 1275348 [TBL] [Abstract][Full Text] [Related]
3. Influence of fasting and refeeding high forage and all-concentrate diets on beef heifers. Bond J; Slyter LL; Rumsey TS Growth; 1984; 48(3):354-69. PubMed ID: 6500334 [TBL] [Abstract][Full Text] [Related]
4. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers. Moya D; Calsamiglia S; Ferret A; Blanch M; Fandiño JI; Castillejos L; Yoon I J Anim Sci; 2009 Sep; 87(9):2874-81. PubMed ID: 19542509 [TBL] [Abstract][Full Text] [Related]
5. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Robles V; González LA; Ferret A; Manteca X; Calsamiglia S J Anim Sci; 2007 Oct; 85(10):2538-47. PubMed ID: 17609471 [TBL] [Abstract][Full Text] [Related]
6. The in vitro reduction of sodium [36Cl]chlorate in bovine ruminal fluid. Oliver CE; Bauer ML; Caton JS; Anderson RC; Smith DJ J Anim Sci; 2007 Aug; 85(8):2059-68. PubMed ID: 17504966 [TBL] [Abstract][Full Text] [Related]
7. Performance, behavior, and welfare of Friesian heifers housed in pens with two, four, and eight individuals per concentrate feeding place. González LA; Ferret A; Manteca X; Ruíz-de-la-Torre JL; Calsamiglia S; Devant M; Bach A J Anim Sci; 2008 Jun; 86(6):1446-58. PubMed ID: 18272856 [TBL] [Abstract][Full Text] [Related]
8. Effect of intraruminal inoculation on adaptation of lambs and heifers to a high-energy ration. Huber TL Am J Vet Res; 1974 May; 35(5):639-41. PubMed ID: 4857349 [No Abstract] [Full Text] [Related]
9. Effects of tylosin on concentrations of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet. Nagaraja TG; Sun Y; Wallace N; Kemp KE; Parrott CJ Am J Vet Res; 1999 Sep; 60(9):1061-5. PubMed ID: 10490072 [TBL] [Abstract][Full Text] [Related]
10. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Weimer PJ; Stevenson DM; Mertens DR; Thomas EE Appl Microbiol Biotechnol; 2008 Aug; 80(1):135-45. PubMed ID: 18535825 [TBL] [Abstract][Full Text] [Related]
11. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Kung L; Hession AO J Anim Sci; 1995 Jan; 73(1):250-6. PubMed ID: 7601741 [TBL] [Abstract][Full Text] [Related]
12. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro. Long M; Feng WJ; Li P; Zhang Y; He RX; Yu LH; He JB; Jing WY; Li YM; Wang Z; Liu GW Res Vet Sci; 2014 Feb; 96(1):28-9. PubMed ID: 24360648 [TBL] [Abstract][Full Text] [Related]
13. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle. Hart KJ; Martin PG; Foley PA; Kenny DA; Boland TM J Anim Sci; 2009 Oct; 87(10):3342-50. PubMed ID: 19542500 [TBL] [Abstract][Full Text] [Related]
14. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. Beharka AA; Nagaraja TG J Dairy Sci; 1998 Jun; 81(6):1591-8. PubMed ID: 9684165 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of essential amino acids in ruminal bacteria. Viviani R Folia Vet Lat; 1976 APR-JUN; 6(2):120-74. PubMed ID: 793963 [No Abstract] [Full Text] [Related]
17. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat. Owens D; McGee M; Boland T; O'Kiely P J Anim Sci; 2009 Feb; 87(2):658-68. PubMed ID: 18952732 [TBL] [Abstract][Full Text] [Related]
18. Effects of maize grain and lucerne particle size on ruminal fermentation, digestibility and performance of cows in midlactation. Cao ZJ; Li SL; Xing JJ; Ma M; Wang LL J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):157-67. PubMed ID: 18336412 [TBL] [Abstract][Full Text] [Related]
19. Abomasal displacement in cattle: influence of concentrates in the ration on fatty acid concentrations in ruminal, abomasal, and duodenal contents. Breukink HJ; de Ruyter T Am J Vet Res; 1976 Oct; 37(10):1181-4. PubMed ID: 984544 [TBL] [Abstract][Full Text] [Related]
20. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4. Fan Y; Xia G; Jin Y; Wang H J Appl Microbiol; 2022 Apr; 132(4):2661-2672. PubMed ID: 35104035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]