BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 8837462)

  • 1. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow.
    Malumbres M; Martín JF
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):103-14. PubMed ID: 8837462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of L-lysine-, L-threonine-, and L-isoleucine-overproducing strains of Corynebacterium glutamicum.
    Sahm H; Eggeling L; Eikmanns B; Krämer R
    Ann N Y Acad Sci; 1996 May; 782():25-39. PubMed ID: 8659901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum.
    Eikmanns BJ; Eggeling L; Sahm H
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):145-63. PubMed ID: 8092856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799.
    Colón GE; Jetten MS; Nguyen TT; Gubler ME; Follettie MT; Sinskey AJ; Stephanopoulos G
    Appl Environ Microbiol; 1995 Jan; 61(1):74-8. PubMed ID: 7887627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence analysis of functional regions of homoserine dehydrogenase genes from L-lysine and L-threonine-producing mutants of Brevibacterium lactofermentum.
    Sugimoto M; Tanaka A; Suzuki T; Matsui H; Nakamori S; Takagi H
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1760-2. PubMed ID: 9362124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis.
    Dong X; Zhao Y; Zhao J; Wang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):873-85. PubMed ID: 27033538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of threonine by Brevibacterium flavum containing threonine biosynthesis genes from Escherichia coli.
    Pátek M; Hochmannová J; Nesvera J
    Folia Microbiol (Praha); 1993; 38(5):355-9. PubMed ID: 8262444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Control of the metabolic pathway of threonine in E coli. Application of biotechnology].
    Raïs B; Mazat JP
    Acta Biotheor; 1995 Jun; 43(1-2):143-53. PubMed ID: 7709683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum.
    Cremer J; Treptow C; Eggeling L; Sahm H
    J Gen Microbiol; 1988 Dec; 134(12):3221-9. PubMed ID: 3151991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors improving L-threonine production by a three L-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum.
    Ishida M; Kawashima H; Sato K; Hashiguchi K; Ito H; Enei H; Nakamori S
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):768-70. PubMed ID: 7764868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum.
    Cahyanto MN; Kawasaki H; Nagashio M; Fujiyama K; Seki T
    Microbiology (Reading); 2006 Jan; 152(Pt 1):105-112. PubMed ID: 16385120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activities and regulation of the enzymes involved in the first and the third steps of the aspartate biosynthetic pathway in Enterococcus faecium.
    Kalcheva EO; Shanskaya VO; Maliuta SS
    Arch Microbiol; 1994; 161(4):359-62. PubMed ID: 8002714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory mechanisms after short- and long-term perturbed lysine biosynthesis in the aspartate pathway: the need for isogenes in Arabidopsis thaliana.
    Van Bochaute P; Novoa A; Ballet S; Rognes SE; Angenon G
    Physiol Plant; 2013 Dec; 149(4):449-60. PubMed ID: 23556418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes.
    Malumbres M; Mateos LM; Guerrero C; Martín JF
    Folia Microbiol (Praha); 1995; 40(6):595-606. PubMed ID: 8768250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
    Eikmanns BJ; Metzger M; Reinscheid D; Kircher M; Sahm H
    Appl Microbiol Biotechnol; 1991 Feb; 34(5):617-22. PubMed ID: 1369320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.
    Kind S; Jeong WK; Schröder H; Wittmann C
    Metab Eng; 2010 Jul; 12(4):341-51. PubMed ID: 20381632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different levels of aspartokinase on the lysine production by Corynebacterium lactofermentum.
    Jetten MS; Follettie MT; Sinskey AJ
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):76-82. PubMed ID: 7766138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of threonine by mammalian cells: expression of a complete bacterial biosynthetic pathway in an animal cell.
    Rees WD; Hay SM
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):999-1007. PubMed ID: 7639721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of aspartate in Mycobacterium smegmatis.
    Sritharan V; Wheeler PR; Ratledge C
    Eur J Biochem; 1989 Apr; 180(3):587-93. PubMed ID: 2496980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the aspartic acid metabolic pathway using mutant genes.
    Azevedo RA
    Amino Acids; 2002; 22(3):217-30. PubMed ID: 12083066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.