BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 8837739)

  • 1. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P450 4A1 fusion protein.
    Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1996 Oct; 334(1):59-66. PubMed ID: 8837739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein.
    Chaurasia CS; Alterman MA; Lu P; Hanzlik RP
    Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme-coordinating analogs of lauric acid as inhibitors of fatty acid omega-hydroxylation.
    Lu P; Alterman MA; Chaurasia CS; Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1997 Jan; 337(1):1-7. PubMed ID: 8990261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site structure and substrate specificity of cytochrome P450 4A1: steric control of ligand approach perpendicular to heme plane.
    Bambal RB; Hanzlik RP
    Biochem Biophys Res Commun; 1996 Feb; 219(2):445-9. PubMed ID: 8605007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteroatom substitution shifts regioselectivity of lauric acid metabolism from omega-hydroxylation to (omega-1)-oxidation.
    Alterman MA; Chaurasia CS; Lu P; Hanzlik RP
    Biochem Biophys Res Commun; 1995 Sep; 214(3):1089-94. PubMed ID: 7575514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein.
    Alterman MA; Chaurasia CS; Lu P; Hardwick JP; Hanzlik RP
    Arch Biochem Biophys; 1995 Jul; 320(2):289-96. PubMed ID: 7625836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omega- and (omega-1)-hydroxylation of lauric acid and arachidonic acid by rat renal cytochrome P-450.
    Imaoka S; Tanaka S; Funae Y
    Biochem Int; 1989 Apr; 18(4):731-40. PubMed ID: 2504167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes.
    Powell PK; Wolf I; Lasker JM
    Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-450-dependent metabolism of lauric acid in alcoholic liver disease: comparison between rat liver and kidney microsomes.
    Amet Y; Lucas D; Zhang-Gouillon ZQ; French SW
    Alcohol Clin Exp Res; 1998 Apr; 22(2):455-62. PubMed ID: 9581653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of rabbit cytochromes P4504A which catalyze the omega-hydroxylation of arachidonic acid, fatty acids, and prostaglandins.
    Roman LJ; Palmer CN; Clark JE; Muerhoff AS; Griffin KJ; Johnson EF; Masters BS
    Arch Biochem Biophys; 1993 Nov; 307(1):57-65. PubMed ID: 8239664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation.
    Helvig C; Tijet N; Feyereisen R; Walker FA; Restifo LL
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1495-502. PubMed ID: 15555597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro hydroxylation and epoxidation of some isomeric lauric acid analogs by rat liver microsomes. Identification of metabolites and effects of clofibrate or phenobarbital pretreatment.
    Boucher JL; Delaforge M; Salaün JP; Pinot F; Durst F; Pflieger P; Mioskowski C
    Drug Metab Dispos; 1996 Apr; 24(4):462-8. PubMed ID: 8801062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling and substrate binding study of human CYP4A11 enzyme.
    Chang YT; Loew GH
    Proteins; 1999 Feb; 34(3):403-15. PubMed ID: 10024026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole.
    Dierks EA; Davis SC; Ortiz de Montellano PR
    Biochemistry; 1998 Feb; 37(7):1839-47. PubMed ID: 9485309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases.
    Hoch U; Zhang Z; Kroetz DL; Ortiz de Montellano PR
    Arch Biochem Biophys; 2000 Jan; 373(1):63-71. PubMed ID: 10620324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alcohol consumption enhances fatty acid omega-oxidation, with a greater increase in male than in female rats.
    Ma X; Baraona E; Lieber CS
    Hepatology; 1993 Nov; 18(5):1247-53. PubMed ID: 8225232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity.
    Straub P; Johnson EF; Kemper B
    Arch Biochem Biophys; 1993 Nov; 306(2):521-7. PubMed ID: 8215458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions.
    Dietrich M; Do TA; Schmid RD; Pleiss J; Urlacher VB
    J Biotechnol; 2009 Jan; 139(1):115-7. PubMed ID: 18984016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4.
    Scheller U; Zimmer T; Kärgel E; Schunck WH
    Arch Biochem Biophys; 1996 Apr; 328(2):245-54. PubMed ID: 8645001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.