These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 8838575)

  • 1. Impaired synaptic functions with aging as characterized by decreased calcium influx and acetylcholine release.
    Tanaka Y; Hasegawa A; Ando S
    J Neurosci Res; 1996 Jan; 43(1):63-76. PubMed ID: 8838575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic cholinergic actions by the putative cognitive enhancing agent DuP 996.
    Vickroy TW
    J Pharmacol Exp Ther; 1993 Feb; 264(2):910-7. PubMed ID: 8382283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in the levels of voltage-dependent calcium channels and other synaptic proteins in rat brain cortices.
    Iwamoto M; Hagishita T; Shoji-Kasai Y; Ando S; Tanaka Y
    Neurosci Lett; 2004 Aug; 366(3):277-81. PubMed ID: 15288434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered acetylcholine metabolism of brain in uremia: role of secondary hyperparathyroidism.
    Smogorzewski MJ; Massry SG
    J Ren Nutr; 2008 Jan; 18(1):122-6. PubMed ID: 18089458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes.
    Tanaka Y; Waki H; Kon K; Ando S
    Neuroreport; 1997 Jul; 8(9-10):2203-7. PubMed ID: 9243612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice.
    Parames SF; Coletta-Yudice ED; Nogueira FM; Nering de Sousa MB; Hayashi MA; Lima-Landman MT; Lapa AJ; Souccar C
    Neuroscience; 2014 Jun; 269():173-83. PubMed ID: 24704431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of calcium homeostasis in nerve endings during aging.
    Satrustegui J; Martinez-Serrano A; Bogonez E; Vitorica J; Blanco P; Nuñez E
    Z Gerontol; 1991; 24(2):88-90. PubMed ID: 1652179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline uptake, acetylcholine synthesis and release, and halothane effects in synaptosomes.
    Johnson GV; Hartzell CR
    Anesth Analg; 1985 Apr; 64(4):395-9. PubMed ID: 3842799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway.
    Wang SJ
    Neuroscience; 2005; 134(3):987-1000. PubMed ID: 16026936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid-derived choline intermediates and acetylcholine synthesis in mouse brain synaptosomes.
    Yavin E; Tanaka Y; Ando S
    J Neurosci Res; 1989 Oct; 24(2):241-6. PubMed ID: 2585548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of cholinergic synaptic functions by sialylcholesterol.
    Tanaka Y; Ando S
    Glycoconj J; 1996 Apr; 13(2):321-6. PubMed ID: 8737257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.
    Silva VS; Nunes MA; Cordeiro JM; Calejo AI; Santos S; Neves P; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Toxicology; 2007 Jul; 236(3):158-77. PubMed ID: 17560001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Klein J
    Neurochem Int; 2008 May; 52(6):972-8. PubMed ID: 18023504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels.
    Man-Son-Hing H; Zoran MJ; Lukowiak K; Haydon PG
    Nature; 1989 Sep; 341(6239):237-9. PubMed ID: 2476676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulation of acetylcholine synthesis in presynaptic endings of cholinergic neurons of the central nervous system].
    Tuchek S; Dolezhal V; Richny Ia
    Neirofiziologiia; 1984; 16(5):603-11. PubMed ID: 6151119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sigma-1 receptors do not regulate calcium influx through voltage-dependent calcium channels in mouse brain synaptosomes.
    González LG; Sánchez-Fernández C; Cobos EJ; Baeyens JM; del Pozo E
    Eur J Pharmacol; 2012 Feb; 677(1-3):102-6. PubMed ID: 22227337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ciguatoxin-induced changes in acetylcholine release and in cytosolic calcium levels.
    Molgo J; Shimahara T; Gaudry-Talarmain YM; Comella JX; Legrand AM
    Bull Soc Pathol Exot; 1992; 85(5 Pt 2):486-8. PubMed ID: 1340351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient release of acetylcholine from Torpedo synaptosomes in response to prolonged depolarization.
    Meunier FM; Birman S
    J Physiol (Paris); 1986; 81(4):306-11. PubMed ID: 3572824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.