BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8838576)

  • 1. Alteration of dopamine release by rat caudate putamen tissues superfused with alpha 2-macroglobulin.
    Hu YQ; Liu BJ; Dluzen DE; Koo PH
    J Neurosci Res; 1996 Jan; 43(1):71-7. PubMed ID: 8838576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracranial infusion of monoamine-activated alpha 2-macroglobulin decreases dopamine concentrations within the rat caudate putamen.
    Hu YQ; Dluzen DE; Koo PH
    J Neurosci Res; 1994 Aug; 38(5):531-7. PubMed ID: 7529325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoamine-activated alpha 2-macroglobulin inhibits choline acetyltransferase of embryonic basal forebrain neurons and reversal of the inhibition by NGF and BDNF but not NT-3.
    Liebl DJ; Koo PH
    J Neurosci Res; 1994 Jul; 38(4):407-14. PubMed ID: 7523691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single or multiple injections of methamphetamine increased dopamine turnover but did not decrease tyrosine hydroxylase levels or cleave caspase-3 in caudate-putamen.
    Pereira FC; Lourenço ES; Borges F; Morgadinho T; Ribeiro CF; Macedo TR; Ali SF
    Synapse; 2006 Sep; 60(3):185-93. PubMed ID: 16739116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of nerve growth factor-stimulated neurite outgrowth by methylamine-modified alpha 2-macroglobulin.
    Koo PH; Liebl DJ
    J Neurosci Res; 1992 Apr; 31(4):678-92. PubMed ID: 1374478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tamoxifen increases methamphetamine-evoked dopamine output from superfused striatal tissue fragments of male mice.
    Willett MC; Dluzen DE
    Brain Res; 2004 Dec; 1029(2):186-94. PubMed ID: 15542073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single exposure to morphine induces long-lasting hyporeactivity of rat caudate putamen dopaminergic nerve terminals.
    Pereira FC; Santos SD; Ribeiro CF; Ali SF; Macedo TR
    Ann N Y Acad Sci; 2004 Oct; 1025():414-23. PubMed ID: 15542744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
    Huot P; Lévesque M; Parent A
    Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal dopamine output is compromised within +/- BDNF mice.
    Dluzen DE; Anderson LI; McDermott JL; Kucera J; Walro JM
    Synapse; 2002 Feb; 43(2):112-7. PubMed ID: 11754489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of NADH on dopamine release in rat striatum.
    Pearl SM; Antion MD; Stanwood GD; Jaumotte JD; Kapatos G; Zigmond MJ
    Synapse; 2000 May; 36(2):95-101. PubMed ID: 10767056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors.
    Tarazi FI; Campbell A; Yeghiayan SK; Baldessarini RJ
    Synapse; 1998 Oct; 30(2):227-35. PubMed ID: 9723793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of chronic levodopa treatment on pre- and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys.
    Rioux L; Frohna PA; Joyce JN; Schneider JS
    Mov Disord; 1997 Mar; 12(2):148-58. PubMed ID: 9087972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of dopamine and choline acetyltransferase concentrations in rat CNS neurons by rat alpha 1- and alpha 2-macroglobulins.
    Hu YQ; Liebl DJ; Dluzen DE; Koo PH
    J Neurosci Res; 1998 Feb; 51(4):541-50. PubMed ID: 9514208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease.
    Kish SJ; Tong J; Hornykiewicz O; Rajput A; Chang LJ; Guttman M; Furukawa Y
    Brain; 2008 Jan; 131(Pt 1):120-31. PubMed ID: 17956909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clozapine and cocaine effects on dopamine and serotonin release in nucleus accumbens during psychostimulant behavior and withdrawal.
    Broderick PA; Hope O; Okonji C; Rahni DN; Zhou Y
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Jan; 28(1):157-71. PubMed ID: 14687870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease.
    Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T
    Exp Neurol; 2004 Jul; 188(1):65-73. PubMed ID: 15191803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of inherent and drug-induced dopaminergic activity after exposure to benzo(alpha)pyrene.
    Konstandi M; Harkitis P; Thermos K; Ogren SO; Johnson EO; Tzimas P; Marselos M
    Neurotoxicology; 2007 Jul; 28(4):860-7. PubMed ID: 17570529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of long-term sensorimotor recovery following intrastriatal and--accumbens DA micrografts in a rat model of Parkinson's disease.
    Falkenstein G; Rosenthal C; Reum T; Morgenstern R; Döbrössy M; Nikkhah G
    J Comp Neurol; 2009 Jul; 515(1):41-55. PubMed ID: 19399892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model.
    Lawler CP; Gilmore JH; Watts VJ; Walker QD; Southerland SB; Cook LL; Mathis CA; Mailman RB
    Synapse; 1995 Dec; 21(4):299-311. PubMed ID: 8869160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of glutathione and cysteine on the methylmercury-induced striatal dopamine release in vivo.
    Faro LR; do Nascimento JL; Campos F; Vidal L; Alfonso M; Durán R
    Life Sci; 2005 Jun; 77(4):444-51. PubMed ID: 15894013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.