These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8838596)
21. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV. Potter SM; Henzel WJ; Aswad DW Protein Sci; 1993 Oct; 2(10):1648-63. PubMed ID: 8251940 [TBL] [Abstract][Full Text] [Related]
22. Aspartimide formation in the joining peptide sequence of porcine and mouse pro-opiomelanocortin. Toney K; Bateman A; Gagnon C; Bennett HP J Biol Chem; 1993 Jan; 268(2):1024-31. PubMed ID: 8380403 [TBL] [Abstract][Full Text] [Related]
23. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes. Gilbert JM; Fowler A; Bleibaum J; Clarke S Biochemistry; 1988 Jul; 27(14):5227-33. PubMed ID: 3167043 [TBL] [Abstract][Full Text] [Related]
24. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. Johnson BA; Shirokawa JM; Hancock WS; Spellman MW; Basa LJ; Aswad DW J Biol Chem; 1989 Aug; 264(24):14262-71. PubMed ID: 2760065 [TBL] [Abstract][Full Text] [Related]
25. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening. Oda A; Noji I; Fukuyoshi S; Takahashi O J Pharm Biomed Anal; 2015 Dec; 116():116-22. PubMed ID: 25758062 [TBL] [Abstract][Full Text] [Related]
26. Modification of synthetic peptides related to lactate dehydrogenase (231-242) by protein carboxyl methyltransferase and tyrosine protein kinase: effects of introducing an isopeptide bond between aspartic acid-235 and serine-236. Aswad DW; Johnson BA; Glass DB Biochemistry; 1987 Feb; 26(3):675-81. PubMed ID: 3105574 [TBL] [Abstract][Full Text] [Related]
27. Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo. O'Connor CM; Clarke S J Biol Chem; 1983 Jul; 258(13):8485-92. PubMed ID: 6863297 [TBL] [Abstract][Full Text] [Related]
29. Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions. Lowenson J; Clarke S Blood Cells; 1988; 14(1):103-18. PubMed ID: 3052632 [TBL] [Abstract][Full Text] [Related]
30. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Ingrosso D; D'angelo S; di Carlo E; Perna AF; Zappia V; Galletti P Eur J Biochem; 2000 Jul; 267(14):4397-405. PubMed ID: 10880963 [TBL] [Abstract][Full Text] [Related]
31. Protein L-isoaspartyl methyltransferase from the nematode Caenorhabditis elegans: genomic structure and substrate specificity. Kagan RM; Clarke S Biochemistry; 1995 Aug; 34(34):10794-806. PubMed ID: 7662659 [TBL] [Abstract][Full Text] [Related]
32. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. Johnson BA; Murray ED; Clarke S; Glass DB; Aswad DW J Biol Chem; 1987 Apr; 262(12):5622-9. PubMed ID: 3571226 [TBL] [Abstract][Full Text] [Related]
33. Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis. D'Angelo S; Trojsi F; Salvatore A; Daniele L; Raimo M; Galletti P; MonsurrĂ² MR Neurochem Int; 2013 Nov; 63(6):626-34. PubMed ID: 24044898 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes. Lou LL; Clarke S Biochemistry; 1987 Jan; 26(1):52-9. PubMed ID: 3828308 [TBL] [Abstract][Full Text] [Related]
35. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. Xie H; Clarke S J Biol Chem; 1993 Jun; 268(18):13364-71. PubMed ID: 8514774 [TBL] [Abstract][Full Text] [Related]
36. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues. Ota IM; Clarke S J Biol Chem; 1989 Aug; 264(22):12879-84. PubMed ID: 2753892 [TBL] [Abstract][Full Text] [Related]
37. Optimal conditions for the use of protein L-isoaspartyl methyltransferase in assessing the isoaspartate content of peptides and proteins. Johnson BA; Aswad DW Anal Biochem; 1991 Feb; 192(2):384-91. PubMed ID: 1827964 [TBL] [Abstract][Full Text] [Related]
38. D-aspartate content of erythrocyte membrane proteins is decreased in uremia: implications for the repair of damaged proteins. Perna AF; D'Aniello A; Lowenson JD; Clarke S; De Santo NG; Ingrosso D J Am Soc Nephrol; 1997 Jan; 8(1):95-104. PubMed ID: 9013453 [TBL] [Abstract][Full Text] [Related]
39. Protein carboxyl methylation and methyl ester turnover in density-fractionated human erythrocytes. Ladino CA; O'Connor CM Mech Ageing Dev; 1990 Aug; 55(2):123-37. PubMed ID: 2232907 [TBL] [Abstract][Full Text] [Related]
40. Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system. Galletti P; Ciardiello A; Ingrosso D; Di Donato A; D'Alessio G Biochemistry; 1988 Mar; 27(5):1752-7. PubMed ID: 3365422 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]