BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 8839016)

  • 1. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the kinematic and dynamic behavior of the shoulder mechanism.
    van der Helm FC
    J Biomech; 1994 May; 27(5):527-50. PubMed ID: 8027089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a model for force predictions in the human shoulder.
    Karlsson D; Peterson B
    J Biomech; 1992 Feb; 25(2):189-99. PubMed ID: 1733994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element musculoskeletal model of the shoulder mechanism.
    van der Helm FC
    J Biomech; 1994 May; 27(5):551-69. PubMed ID: 8027090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoulder joint kinetics during the push phase of wheelchair propulsion.
    Kulig K; Rao SS; Mulroy SJ; Newsam CJ; Gronley JK; Bontrager EL; Perry J
    Clin Orthop Relat Res; 1998 Sep; (354):132-43. PubMed ID: 9755772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model predicting individual shoulder muscle forces based on relationship between electromyographic and 3D external forces in static position.
    Laursen B; Jensen BR; Németh G; Sjøgaard G
    J Biomech; 1998 Aug; 31(8):731-9. PubMed ID: 9796673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional scapulothoracic motion during active and passive arm elevation.
    Ebaugh DD; McClure PW; Karduna AR
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):700-9. PubMed ID: 15935534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons.
    Desroches G; Aissaoui R; Bourbonnais D
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1155-61. PubMed ID: 18503814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia.
    Arnet U; van Drongelen S; Scheel-Sailer A; van der Woude LH; Veeger DH
    J Rehabil Med; 2012 Mar; 44(3):222-8. PubMed ID: 22367531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET
    Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.