These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8839021)

  • 1. Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo.
    Roberts SG; Hutchinson TM; Arnaud SB; Kiratli BJ; Martin RB; Steele CR
    J Biomech; 1996 Jan; 29(1):91-8. PubMed ID: 8839021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive determination of ulnar stiffness from mechanical response--in vivo comparison of stiffness and bone mineral content in humans.
    Steele CR; Zhou LJ; Guido D; Marcus R; Heinrichs WL; Cheema C
    J Biomech Eng; 1988 May; 110(2):87-96. PubMed ID: 3379938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to "Clinical Evaluation of Bone Strength and Fracture Risk".
    Loucks AB; Clark BC; Bowman L
    Curr Osteoporos Rep; 2017 Aug; 15(4):396-397. PubMed ID: 28660374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.
    Arnold PA; Ellerbrock ER; Bowman L; Loucks AB
    J Biomech; 2014 Nov; 47(14):3580-3. PubMed ID: 25261885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship among MRTA, DXA, and QUS.
    Djokoto C; Tomlinson G; Waldman S; Grynpas M; Cheung AM
    J Clin Densitom; 2004; 7(4):448-56. PubMed ID: 15618607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship among MRTA, DXA, and QUS revisited.
    Kiebzak GM; Ambrose CG
    J Clin Densitom; 2005; 8(4):396-403. PubMed ID: 16311423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation between resonant frequencies and torsional stiffness of long bones in vitro. Validation of a simple beam model.
    Lowet G; Van Audekercke R; Van der Perre G; Geusens P; Dequeker J; Lammens J
    J Biomech; 1993 Jun; 26(6):689-96. PubMed ID: 8514813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive assessment of ulnar bending stiffness in women.
    McCabe F; Zhou LJ; Steele CR; Marcus R
    J Bone Miner Res; 1991 Jan; 6(1):53-9. PubMed ID: 2048432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chair restraint on the strength of the tibia in rhesus monkeys.
    Hutchinson TM; Bakulin AV; Rakhmanov AS; Martin RB; Steele CR; Arnaud SB
    J Med Primatol; 2001 Dec; 30(6):313-21. PubMed ID: 11990531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new tool to assess the mechanical properties of bone due to collagen degradation.
    Wynnyckyj C; Omelon S; Savage K; Damani M; Chachra D; Grynpas MD
    Bone; 2009 May; 44(5):840-8. PubMed ID: 19150659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationale, design and clinical performance of the mechanical response tissue analyser: a non-invasive technology for measurement of long bone bending stiffness.
    Miller LE; Ramp WK; Steele CR; Nickols-Richardson SM; Herbert WG
    J Med Eng Technol; 2013 Feb; 37(2):144-9. PubMed ID: 23360197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo assessment of forearm bone mass and ulnar bending stiffness in healthy men.
    Myburgh KH; Zhou LJ; Steele CR; Arnaud S; Marcus R
    J Bone Miner Res; 1992 Nov; 7(11):1345-50. PubMed ID: 1466258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone changes in mucopolysaccharidosis VI in cats and the effects of bone marrow transplantation: mechanical testing of long bones.
    Norrdin RW; Simske SJ; Gaarde S; Schwardt JD; Thrall MA
    Bone; 1995 Nov; 17(5):485-9. PubMed ID: 8579961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of the mechanical properties of bones.
    Martin RB
    J Biomech; 1991; 24 Suppl 1():79-88. PubMed ID: 1842337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements to mechanical response tissue analysis.
    Bowman L; Loucks AB
    MethodsX; 2019; 6():2408-2419. PubMed ID: 31687360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.
    Martin DE; Severns AE; Kabo JM
    J Biomech; 2004 Aug; 37(8):1289-93. PubMed ID: 15212935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of bone mechanical properties by vibration and ultrasonic wave propagation analysis.
    Van Der Perre G; Lowet G
    Bone; 1996 Jan; 18(1 Suppl):29S-35S. PubMed ID: 8717545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of pQCT bone strength index with mechanical testing in distraction osteogenesis.
    Kokoroghiannis C; Charopoulos I; Lyritis G; Raptou P; Karachalios T; Papaioannou N
    Bone; 2009 Sep; 45(3):512-6. PubMed ID: 19497394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones.
    Simske SJ; Greenberg AR; Luttges MW
    J Mater Sci Mater Med; 1991 Jan; 2(1):43-50. PubMed ID: 11538820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic wave propagation in bone in vivo: methodology.
    Cheng S; Timonen J; Suominen H
    J Biomech; 1995 Apr; 28(4):471-8. PubMed ID: 7738057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.