These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 8839050)
1. Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-alpha-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats. Miller RT; Lau SS; Monks TJ Chem Res Toxicol; 1996 Mar; 9(2):457-65. PubMed ID: 8839050 [TBL] [Abstract][Full Text] [Related]
2. Glutathione and N-acetylcysteine conjugates of alpha-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity. Bai F; Lau SS; Monks TJ Chem Res Toxicol; 1999 Dec; 12(12):1150-7. PubMed ID: 10604863 [TBL] [Abstract][Full Text] [Related]
3. 2,5-Bis-(glutathion-S-yl)-alpha-methyldopamine, a putative metabolite of (+/-)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. Miller RT; Lau SS; Monks TJ Eur J Pharmacol; 1997 Apr; 323(2-3):173-80. PubMed ID: 9128836 [TBL] [Abstract][Full Text] [Related]
4. Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells. Jones DC; Lau SS; Monks TJ J Pharmacol Exp Ther; 2004 Oct; 311(1):298-306. PubMed ID: 15169827 [TBL] [Abstract][Full Text] [Related]
5. Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Carvalho M; Hawksworth G; Milhazes N; Borges F; Monks TJ; Fernandes E; Carvalho F; Bastos ML Arch Toxicol; 2002 Oct; 76(10):581-8. PubMed ID: 12373454 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of 5-(glutathion-S-yl)-alpha-methyldopamine following intracerebroventricular administration to male Sprague-Dawley rats. Miller RT; Lau SS; Monks TJ Chem Res Toxicol; 1995; 8(5):634-41. PubMed ID: 7548745 [TBL] [Abstract][Full Text] [Related]
7. Hepatotoxicity of 3,4-methylenedioxyamphetamine and alpha-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Carvalho M; Milhazes N; Remião F; Borges F; Fernandes E; Amado F; Monks TJ; Carvalho F; Bastos ML Arch Toxicol; 2004 Jan; 78(1):16-24. PubMed ID: 14586543 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, in vitro formation, and behavioural effects of glutathione regioisomers of alpha-methyldopamine with relevance to MDA and MDMA (ecstasy). Easton N; Fry J; O'Shea E; Watkins A; Kingston S; Marsden CA Brain Res; 2003 Oct; 987(2):144-54. PubMed ID: 14499958 [TBL] [Abstract][Full Text] [Related]
9. The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Carvalho M; Remião F; Milhazes N; Borges F; Fernandes E; Carvalho F; Bastos ML Toxicology; 2004 Aug; 200(2-3):193-203. PubMed ID: 15212815 [TBL] [Abstract][Full Text] [Related]
10. Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro. Carvalho M; Remião F; Milhazes N; Borges F; Fernandes E; Monteiro Mdo C; Gonçalves MJ; Seabra V; Amado F; Carvalho F; Bastos ML Chem Res Toxicol; 2004 May; 17(5):623-32. PubMed ID: 15144219 [TBL] [Abstract][Full Text] [Related]
11. Serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxyamphetamine and 3,4-(+/-)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of gamma-glutamyl transpeptidase. Bai F; Jones DC; Lau SS; Monks TJ Chem Res Toxicol; 2001 Jul; 14(7):863-70. PubMed ID: 11453733 [TBL] [Abstract][Full Text] [Related]
13. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain. Jones DC; Duvauchelle C; Ikegami A; Olsen CM; Lau SS; de la Torre R; Monks TJ J Pharmacol Exp Ther; 2005 Apr; 313(1):422-31. PubMed ID: 15634943 [TBL] [Abstract][Full Text] [Related]
14. Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity. Escubedo E; Abad S; Torres I; Camarasa J; Pubill D Neurochem Int; 2011 Jan; 58(1):92-101. PubMed ID: 21074589 [TBL] [Abstract][Full Text] [Related]
15. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love"). McNamara R; Kerans A; O'Neill B; Harkin A Neuropharmacology; 2006 Jan; 50(1):69-80. PubMed ID: 16188283 [TBL] [Abstract][Full Text] [Related]
16. Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. Capela JP; Meisel A; Abreu AR; Branco PS; Ferreira LM; Lobo AM; Remião F; Bastos ML; Carvalho F J Pharmacol Exp Ther; 2006 Jan; 316(1):53-61. PubMed ID: 16183702 [TBL] [Abstract][Full Text] [Related]
17. The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-methylenedioxymethamphetamine (ecstasy) toxicity. Monks TJ; Jones DC; Bai F; Lau SS Ther Drug Monit; 2004 Apr; 26(2):132-6. PubMed ID: 15228153 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of neurotoxic thioether metabolites of 3,4-(+/-)-methylenedioxymethamphetamine in rat brain. Erives GV; Lau SS; Monks TJ J Pharmacol Exp Ther; 2008 Jan; 324(1):284-91. PubMed ID: 17906065 [TBL] [Abstract][Full Text] [Related]
19. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. Battaglia G; Yeh SY; O'Hearn E; Molliver ME; Kuhar MJ; De Souza EB J Pharmacol Exp Ther; 1987 Sep; 242(3):911-6. PubMed ID: 2443644 [TBL] [Abstract][Full Text] [Related]
20. Glial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites. Herndon JM; Cholanians AB; Lau SS; Monks TJ Toxicol Sci; 2014 Mar; 138(1):130-8. PubMed ID: 24299738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]