These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8839124)

  • 1. Mitotic recombination among acrocentric chromosomes' short arms.
    Guissani U; Facchinetti B; Cassina G; Zuffardi O
    Ann Hum Genet; 1996 Mar; 60(2):91-7. PubMed ID: 8839124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic recombination and segregation of satellites in Bloom's syndrome.
    Therman E; Otto PG; Shahidi NT
    Chromosoma; 1981; 82(5):627-36. PubMed ID: 7261713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization.
    Gravholt CH; Friedrich U; Caprani M; Jørgensen AL
    Genomics; 1992 Dec; 14(4):924-30. PubMed ID: 1478673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications.
    Farrell SA; Winsor EJ; Markovic VD
    Am J Med Genet; 1993 Jul; 46(6):715-20. PubMed ID: 8362916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RHG-band polymorphism of the short arms of human acrocentric chromosomes and relationship of variants to satellite associations.
    Balícek P; Zizka J; Skalská H
    Hum Genet; 1982; 62(3):237-9. PubMed ID: 6963243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prominent acrocentric chromosome satellites in child patients with mental retardation or psychiatric disorders; no IQ-satellite size correlation.
    Funderburk SJ; Goldenberg I; Klisak I; Sparkes RS; Westlake J
    Hum Genet; 1979; 50(2):179-85. PubMed ID: 511132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instability of Short Arm of Acrocentric Chromosomes: Lesson from Non-Acrocentric Satellited Chromosomes. Report of 24 Unrelated Cases.
    Redaelli S; Conconi D; Villa N; Sala E; Crosti F; Corti C; Catusi I; Garzo M; Romitti L; Martinoli E; Patrizi A; Malgara R; Recalcati MP; Dalprà L; Lavitrano M; Riva P; Roversi G; Bentivegna A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32413994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jumping translocations in spontaneous abortions.
    Levy B; Dunn TM; Hirschhorn K; Kardon N
    Cytogenet Cell Genet; 2000; 88(1-2):25-9. PubMed ID: 10773659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model for satellite associations of human acrocentric chromosomes.
    Lezhava T; Tsigroshvili Z; Dvalishvili N; Jokhadze T
    Georgian Med News; 2008 Nov; (164):90-9. PubMed ID: 19075353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mobile nature of acrocentric elements illustrated by three unusual chromosome variants.
    Reddy KS; Sulcova V
    Hum Genet; 1998 Jun; 102(6):653-62. PubMed ID: 9703427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22: molecular characterization of the marker.
    Dutta UR; Vempally S; Ranganath P; Dalal A
    Gene; 2014 Apr; 539(1):162-7. PubMed ID: 24508374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A further improved method for identifying heteromorphism of acrocentric chromosomes.
    Kamei T; Lee-Okimoto S; Sohda M; Niikawa N
    Hum Genet; 1986 Aug; 73(4):368-71. PubMed ID: 3744363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism of 5-methylcytosine-rich DNA in human acrocentric chromosomes.
    Okamoto E; Miller DA; Erlanger BF; Miller OJ
    Hum Genet; 1981; 58(3):255-9. PubMed ID: 7327546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations.
    Choo KH; Vissel B; Brown R; Filby RG; Earle E
    Nucleic Acids Res; 1988 Feb; 16(4):1273-84. PubMed ID: 2831495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extended nomenclature of the canine karyotype.
    Reimann N; Bartnitzke S; Bullerdiek J; Schmitz U; Rogalla P; Nolte I; Rønne M
    Cytogenet Cell Genet; 1996; 73(1-2):140-4. PubMed ID: 8646883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalar satellites of human acrocentric chromosomes as a cytological manifestation of polymorphism in GC-rich material?
    Balícek P; Zizka J
    Hum Genet; 1980; 54(3):343-7. PubMed ID: 6156886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sequential staining for G- and C-banding of chromosomes in the analysis of the morphology of the short arms of human acrocentric chromosomes].
    Gurbanov VP; Barkhudarian AS; Malygina NA
    Biull Eksp Biol Med; 1976 Oct; 82(10):1267-9. PubMed ID: 70241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic variants of acrocentric human chromosomes as analysed by restriction endonucleases.
    De Cabo SF; Ludeña P; Velázquez M; Sentis C; Fernández-Piqueras J
    Genetica; 1991; 83(3):203-6. PubMed ID: 1652538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of 17p is a major consequence of whole-arm chromosome translocations in hematologic malignancies.
    Adeyinka A; Wei S; Sanchez J
    Cancer Genet Cytogenet; 2007 Mar; 173(2):136-43. PubMed ID: 17321329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Frequency of acrocentric chromosome associations in human blood lymphocytes when using different methods for its assessment].
    Frolov AK
    Genetika; 1985 Jul; 21(7):1229-35. PubMed ID: 4043730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.