These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8840090)

  • 41. Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Jan; 162(1):13-21. PubMed ID: 3351783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.
    Liu H; Wu MM; Zakon HH
    Dev Neurobiol; 2007 Sep; 67(10):1289-304. PubMed ID: 17638382
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain.
    Metzner W; Heiligenberg W
    J Comp Physiol A; 1991 Aug; 169(2):135-50. PubMed ID: 1748973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases.
    Silva A; Quintana L; Perrone R; Sierra F
    J Physiol Paris; 2008; 102(4-6):272-8. PubMed ID: 18992332
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Environmental, seasonal, and social modulations of basal activity in a weakly electric fish.
    Silva A; Perrone R; Macadar O
    Physiol Behav; 2007 Feb; 90(2-3):525-36. PubMed ID: 17178133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Androgen binding in the brain and electric organ of a mormyrid fish.
    Bass AH; Segil N; Kelley DB
    J Comp Physiol A; 1986 Oct; 159(4):535-44. PubMed ID: 3491207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Species-specific differences in sensorimotor adaptation are correlated with differences in social structure.
    Oestreich J; Zakon HH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):845-56. PubMed ID: 16007457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish.
    Friedman MA; Hopkins CD
    J Neurosci; 1998 Feb; 18(3):1171-85. PubMed ID: 9437037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus.
    Stoddard PK; Markham MR; Salazar VL; Allee S
    Physiol Behav; 2007 Jan; 90(1):11-20. PubMed ID: 16996093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Communication in the weakly electric fish Sternopygus macrurus. I. The neural basis of conspecific EOD detection.
    Fleishman LJ
    J Comp Physiol A; 1992 Mar; 170(3):335-48. PubMed ID: 1593503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electric signal synchronization as a behavioural strategy to generate social attention in small groups of mormyrid weakly electric fish and a mobile fish robot.
    Worm M; Landgraf T; von der Emde G
    Biol Cybern; 2021 Dec; 115(6):599-613. PubMed ID: 34398266
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae.
    Picq S; Sperling J; Cheng CJ; Carlson BA; Gallant JR
    Evolution; 2020 May; 74(5):911-935. PubMed ID: 32187650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii.
    Zhou M; Smith GT
    J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus.
    Allee SJ; Markham MR; Salazar VL; Stoddard PK
    Horm Behav; 2008 Mar; 53(3):481-8. PubMed ID: 18206154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish.
    Smith GT
    J Comp Physiol A; 1999 Oct; 185(4):379-87. PubMed ID: 10555272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.