BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8840517)

  • 1. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.
    Wiese TJ; Wuensch SA; Ray PD
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Aug; 114(4):417-22. PubMed ID: 8840517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit enterocytes: implications for lipogenesis.
    Wuensch SA; Ray PD
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Nov; 118(3):599-605. PubMed ID: 9467872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of malate from phosphoenolpyruvate by rabbit liver mitochondria: implications for lipogenesis.
    Carlsen BD; Lambeth DO; Ray PD
    Biochim Biophys Acta; 1988 Apr; 965(1):1-8. PubMed ID: 2831992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of phosphoenolpyruvate from propionate in sheep liver.
    Smith RM; Osborne-White WS
    Biochem J; 1971 Oct; 124(5):867-76. PubMed ID: 4331860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion.
    MacDonald MJ
    J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipogenesis in rat and guinea-pig isolated epididymal fat-cells.
    Saggerson ED
    Biochem J; 1974 May; 140(2):211-24. PubMed ID: 4156167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of enzymes which interact with citrate by (--)hydroxycitrate and 1,2,3,-tricarboxybenzene.
    Cheema-Dhadli S; Halperin ML; Leznoff CC
    Eur J Biochem; 1973 Sep; 38(1):98-102. PubMed ID: 4149431
    [No Abstract]   [Full Text] [Related]  

  • 9. The disposition of citric acid cycle intermediates by isolated rat heart mitochondria.
    Hiltunen JK; Davis EJ
    Biochim Biophys Acta; 1981 Nov; 678(1):115-21. PubMed ID: 7306575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoenolpyruvate efflux from kidney cortex mitochondria of rabbit.
    Bryła J; Dzik JM
    Biochim Biophys Acta; 1981 Dec; 638(2):250-6. PubMed ID: 7317387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between mitochondrial heterogeneity and gluconeogenesis in liver mitochondria of the rat, pigeon and guinea pig.
    Lamartiniere CA; Weiss G
    Hoppe Seylers Z Physiol Chem; 1975 Jul; 356(7):1079-84. PubMed ID: 1193537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibiton of isocitrate dehydrogenase and isocitrate lyase from Acinetobacter calcoaceticus by acids of the citrate and glyoxylate cycle].
    Kleber HP
    Acta Biol Med Ger; 1975; 34(5):723-32. PubMed ID: 1199592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis.
    Des Rosiers C; Di Donato L; Comte B; Laplante A; Marcoux C; David F; Fernandez CA; Brunengraber H
    J Biol Chem; 1995 Apr; 270(17):10027-36. PubMed ID: 7730304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of glutamate dehydrogenase activity in rabbit renal mitochondria by phosphoenolpyruvate.
    Bryła J; Matyaszczyk M
    FEBS Lett; 1983 Oct; 162(2):244-7. PubMed ID: 6628669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the link between citrate and malonyl-CoA in perfused rat hearts.
    Poirier M; Vincent G; Reszko AE; Bouchard B; Kelleher JK; Brunengraber H; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1379-86. PubMed ID: 12234788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of phosphoenolpyruvate synthesis in pigeon liver.
    Gevers W
    Biochem J; 1967 Apr; 103(1):141-52. PubMed ID: 4962163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gluconeogenesis in rabbit liver. I. Pyruvate-derived dicarboxylic acids and phosphoenolpyruvate formation in rabbit liver.
    Johnson DC; Brunsvold RA; Ebert KA; Ray PD
    J Biol Chem; 1973 Feb; 248(3):763-70. PubMed ID: 4346348
    [No Abstract]   [Full Text] [Related]  

  • 18. The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study.
    Schroeder MA; Atherton HJ; Dodd MS; Lee P; Cochlin LE; Radda GK; Clarke K; Tyler DJ
    Circ Cardiovasc Imaging; 2012 Mar; 5(2):201-9. PubMed ID: 22238215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.
    Buch AD; Archana G; Kumar GN
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2620-2629. PubMed ID: 19443543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential energetic metabolism during Trypanosoma cruzi differentiation. I. Citrate synthase, NADP-isocitrate dehydrogenase, and succinate dehydrogenase.
    Adroher FJ; Osuna A; Lupiañez JA
    Arch Biochem Biophys; 1988 Nov; 267(1):252-61. PubMed ID: 3058038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.