BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8841087)

  • 41. Regional differences in rat brain dopamine transporter binding: function of time after chronic cocaine.
    Hitri A; Wyatt RJ
    Clin Neuropharmacol; 1993 Dec; 16(6):525-39. PubMed ID: 9377588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brain and spinal cord 5-HT2 receptors of morphine-tolerant-dependent and -abstinent rats.
    Gulati A; Bhargava HN
    Eur J Pharmacol; 1989 Aug; 167(2):185-92. PubMed ID: 2591474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a recombinant human dopamine transporter in multiple cell lines.
    Eshleman AJ; Neve RL; Janowsky A; Neve KA
    J Pharmacol Exp Ther; 1995 Jul; 274(1):276-83. PubMed ID: 7616409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of preproenkephalin mRNA levels in brain regions and spinal cord of rats treated chronically with morphine.
    Gudehithlu KP; Bhargava HN
    Peptides; 1995; 16(3):415-9. PubMed ID: 7651893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulatory effect of agents active in the presynaptic dopaminergic system on the striatal dopamine transporter.
    Gordon I; Weizman R; Rehavi M
    Eur J Pharmacol; 1996 Feb; 298(1):27-30. PubMed ID: 8867915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord μ-opioid receptors to Gαz protein subunits.
    Valdizán EM; Díaz A; Pilar-Cuéllar F; Lantero A; Mostany R; Villar AV; Laorden ML; Hurlé MA
    Neuropharmacology; 2012 Feb; 62(2):757-64. PubMed ID: 21903117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro and in vivo characterization of newly developed iodinated 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]piperazine derivatives in rats: limited value as dopamine transporter SPECT ligands.
    Rijks LJ; Booij J; Doornbos T; Boer GJ; Ronken E; de Bruin K; Vermeulen RJ; Janssen AG; Van Royen EA
    Synapse; 1996 Jul; 23(3):201-7. PubMed ID: 8807748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chronic opioid antagonist treatment selectively regulates trafficking and signaling proteins in mouse spinal cord.
    Patel CN; Rajashekara V; Patel K; Purohit V; Yoburn BC
    Synapse; 2003 Oct; 50(1):67-76. PubMed ID: 12872295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blockade of morphine dependence-related enhancement of secretory protein synthesis in the pons-medulla and striatum-septum by naltrexone.
    Retz KC; Steele WJ
    Neuropharmacology; 1983 Feb; 22(2):183-9. PubMed ID: 6300721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain dopamine transporter: gender differences and effect of chronic haloperidol.
    Rivest R; Falardeau P; Di Paolo T
    Brain Res; 1995 Sep; 692(1-2):269-72. PubMed ID: 8548314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat.
    Bardo MT; Bhatnagar RK; Gebhart GF
    Brain Res; 1983 Dec; 289(1-2):223-34. PubMed ID: 6318895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of specific [3H]nociceptin binding in rat brain and spinal cord.
    Kusaka T; Yamada S; Kimura R
    Biol Pharm Bull; 2001 Aug; 24(8):902-5. PubMed ID: 11510482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential binding of [3H]MK-801 to brain regions and spinal cord of mice treated chronically with morphine.
    Gudehithlu KP; Bhargava HN
    Gen Pharmacol; 1996 Jan; 27(1):91-4. PubMed ID: 8742501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consequences of an intrastriatal injection of kainic acid on the dopaminergic neuronal and vesicular uptake systems.
    Naudon L; Leroux-Nicollet I; Costentin J
    Brain Res; 1992 Oct; 593(1):32-8. PubMed ID: 1360863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl propyl) piperazine (GBR-12935), an inhibitor of the dopamine transporter, to human CYP2D6.
    Hiroi T; Imaoka S; Chow T; Yabusaki Y; Funae Y
    Biochem Pharmacol; 1997 Jun; 53(12):1937-9. PubMed ID: 9256169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics of central binding sites for [3H] DAMGO in spontaneously hypertensive rats.
    Gulati A; Bhargava HN
    Life Sci; 1990; 47(2):159-66. PubMed ID: 2167417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of prenatal methylazoxymethanol treatment on striatal dopaminergic systems in rat brain.
    Watanabe M; Nonaka R; Hagino Y; Kodama Y
    Neurosci Res; 1998 Feb; 30(2):135-44. PubMed ID: 9579647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of 1,2,3,4,-tetrahydroisoquinoline administration under conditions of CYP2D inhibition on dopamine metabolism, level of tyrosine hydroxylase protein and the binding of [3H]GBR 12,935 to dopamine transporter in the rat nigrostriatal, dopaminergic system.
    Lorenc-Koci E; Antkiewicz-Michaluk L; Wardas J; Zapała M; Wierońska J
    Brain Res; 2004 May; 1009(1-2):67-81. PubMed ID: 15120584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of intracerebroventricular beta-funaltrexamine on mu opioid receptors in the rat brain: consideration of binding condition.
    Liu-Chen LY; Yang HH; Li S; Adams JU
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1047-56. PubMed ID: 7791074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of dopamine transport in rat brain synaptosomes by volatile anesthetics.
    el-Maghrabi EA; Eckenhoff RG
    Anesthesiology; 1993 Apr; 78(4):750-6. PubMed ID: 8466075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.