BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8841768)

  • 1. Synthesis of isotopically labelled retinal. Structural and functional studies at the atomic level of the chromophore in visual pigments.
    Lugtenburg J
    Eur J Clin Nutr; 1996 Jul; 50 Suppl 3():S17-20. PubMed ID: 8841768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C NMR spectroscopy of the chromophore of rhodopsin.
    Shriver JW; Mateescu GD; Abrahamson EW
    Methods Enzymol; 1982; 81():698-703. PubMed ID: 7098911
    [No Abstract]   [Full Text] [Related]  

  • 3. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The preparation of all-trans uniformly (13)C-labeled retinal via a modular total organic synthetic strategy. emerging central contribution of organic synthesis toward the structure and function study with atomic resolution in protein research.
    Creemers AF; Lugtenburg J
    J Am Chem Soc; 2002 Jun; 124(22):6324-34. PubMed ID: 12033861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unprotonated chromophore-protein bond in visual pigments from 13C-NMR spectra.
    Shriver J; Mateescu G; Fager R; Toricha D; Abrahamson EW
    Nature; 1977 Nov; 270(5634):271-4. PubMed ID: 563517
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of the 11-cis-retinal ring methyl substituents in visual pigment formation.
    Domínguez M; Alvarez R; Pérez M; Palczewski K; de Lera AR
    Chembiochem; 2006 Nov; 7(11):1815-25. PubMed ID: 16941510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombination reaction of rhodopsin in situ studied by photoconversion of "indicator yellow".
    Kolesnikov AV; Shukolyukov SA; Cornwall MC; Govardovskii VI
    Vision Res; 2006 May; 46(10):1665-75. PubMed ID: 16153675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore configuration of iodopsin and its photoproducts formed at low temperatures.
    Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1996 Nov; 35(46):14599-607. PubMed ID: 8931558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy.
    Tugarinov V; Kanelis V; Kay LE
    Nat Protoc; 2006; 1(2):749-54. PubMed ID: 17406304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins.
    Munro RA; de Vlugt J; Ward ME; Kim SY; Lee KA; Jung KH; Ladizhansky V; Brown LS
    J Biomol NMR; 2019 Feb; 73(1-2):49-58. PubMed ID: 30719609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of site-specific isotopically labelled zervamicins, the antibiotic peptaibols produced by Emericellopsis salmosynnemata.
    Egorova-Zachernyuk TA; Shvets VI; Versluis K; Heerma W; Creemers AF; Nieuwenhuis SA; Lugtenburg J; Raap J
    J Pept Sci; 1996; 2(6):341-50. PubMed ID: 9230461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of isotopically labeled all-trans retinals for DNP-enhanced solid-state NMR studies of retinylidene proteins.
    Leeder AJ; Brown LJ; Becker-Baldus J; Mehler M; Glaubitz C; Brown RCD
    J Labelled Comp Radiopharm; 2018 Nov; 61(13):922-933. PubMed ID: 29080288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR.
    Verdegem PJ; Bovee-Geurts PH; de Grip WJ; Lugtenburg J; de Groot HJ
    Biochemistry; 1999 Aug; 38(35):11316-24. PubMed ID: 10471281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK
    Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhodopsin exhibiting binding ability to agonist all-trans-retinal.
    Tsukamoto H; Terakita A; Shichida Y
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6303-8. PubMed ID: 15851682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex thermal behavior of 11-cis-retinal, the ligand of the visual pigments.
    Silva López C; Alvarez R; Domínguez M; Nieto Faza O; de Lera AR
    J Org Chem; 2009 Feb; 74(3):1007-13. PubMed ID: 19178351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Invertebrate visual pigments: the diversity of chromophore retinals and its biological significance].
    Seki T; Suzuki T
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):484-93. PubMed ID: 2748894
    [No Abstract]   [Full Text] [Related]  

  • 20. Observations of light-induced structural changes of retinal within rhodopsin.
    Gröbner G; Burnett IJ; Glaubitz C; Choi G; Mason AJ; Watts A
    Nature; 2000 Jun; 405(6788):810-3. PubMed ID: 10866205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.