These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8841855)

  • 41. The evaluation of filtration coefficients of microvasculature for the assessment of fluid 
status in hemodialysis patients.
    Yashiro M; Ochiai M; Fujisawa N; Kadoya Y; Kamata T
    Int J Artif Organs; 2013 Jan; 36(1):7-16. PubMed ID: 23280078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Less symptomatic hypotension using blood volume controlled ultrafiltration.
    Stiller S; Wirtz D; Waterbär F; Gladziwa U; Dakshinamurty KV; Mann H
    ASAIO Trans; 1991; 37(3):M139-41. PubMed ID: 1751083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of bioimpedance methods for estimating total body water and intracellular water changes during hemodialysis.
    Dou Y; Liu L; Cheng X; Cao L; Zuo L
    Nephrol Dial Transplant; 2011 Oct; 26(10):3319-24. PubMed ID: 21398364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of vector and conventional bioelectrical impedance analysis in the optimal dry weight prescription in hemodialysis.
    Guida B; De Nicola L; Trio R; Pecoraro P; Iodice C; Memoli B
    Am J Nephrol; 2000; 20(4):311-8. PubMed ID: 10970985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Volume control, blood pressure and cardiovascular function. Lessons from hemodialysis treatment.
    Charra B; Chazot C
    Nephron Physiol; 2003; 93(4):p94-101. PubMed ID: 12759570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying acute changes in volume and nutritional status during haemodialysis using bioimpedance analysis.
    Chua HR; Xiang L; Chow PY; Xu H; Shen L; Lee E; Teo BW
    Nephrology (Carlton); 2012 Nov; 17(8):695-702. PubMed ID: 22882488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of sodium profiling and feedback technologies on plasma conductivity and ionic mass balance: a study in hypotension-prone dialysis patients.
    Moret K; Aalten J; van den Wall Bake W; Gerlag P; Beerenhout C; van der Sande F; Leunissen K; Kooman J
    Nephrol Dial Transplant; 2006 Jan; 21(1):138-44. PubMed ID: 16144849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Echography of inferior vena cava for estimating fluid removed from patients undergoing hemodialysis.
    Kusaba T; Yamaguchi K; Oda H; Harada T
    Nihon Jinzo Gakkai Shi; 1994 Aug; 36(8):914-20. PubMed ID: 7933667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Merits and limitations of continuous blood volume monitoring during haemodialysis. Summary of the EDTNA/ERCA Journal Club discussion: Winter 2005.
    Lindley EJ
    EDTNA ERCA J; 2006; 32(2):108-16. PubMed ID: 16898105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational analysis of blood volume dynamics during hemodialysis.
    Lopot F; Kotyk P
    Int J Artif Organs; 1997 Feb; 20(2):91-5. PubMed ID: 9093886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of sodium profiling on blood volume and intradialytic hypotension in patients on maintenance hemodialysis.
    Kaczmarczyk I; Kraśniak A; Drozdz M; Chowaniec E; Gajda M; Radziszewski A; Sułowicz W
    Przegl Lek; 2007; 64(7-8):476-82. PubMed ID: 18409348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The recovery of the fluid balance after hemodialysis and hemofiltration.
    Olthof CG; de Vries PM; Kouw PM; Oe PL; Gerlag PG; Schneider H; Donker AJ
    Clin Nephrol; 1992 Mar; 37(3):135-9. PubMed ID: 1563117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automatic feedback control of relative blood volume changes during hemodialysis improves blood pressure stability during and after dialysis.
    Franssen CF; Dasselaar JJ; Sytsma P; Burgerhof JG; de Jong PE; Huisman RM
    Hemodial Int; 2005 Oct; 9(4):383-92. PubMed ID: 16219059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous Blood Volume Monitoring and Ultrafiltration Control.
    Lopot F; Nejedlý B; Sulková S
    Hemodial Int; 2000 Jan; 4(1):8-14. PubMed ID: 28455922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of extracellular fluid volume and fluid status in hemodialysis patients: current status and technical advances.
    Dou Y; Zhu F; Kotanko P
    Semin Dial; 2012 Jul; 25(4):377-87. PubMed ID: 22686593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic modelling and continuous on-line blood volume measurement during dialysis therapy.
    Mann H; Stiller S; Gladziwa U; Königs F
    Nephrol Dial Transplant; 1990; 5 Suppl 1():144-6. PubMed ID: 2129447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New method of predicting dry weight using bioelectrical impedance analysis in haemodialysis patients.
    Lee SW; Kim DY; Lee SH; Cho HC; Kwon SH; Song JH; Kim MJ
    Nephrology (Carlton); 2009 Dec; 14(8):705-11. PubMed ID: 20025677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Which echocardiographic parameter is a better marker of volume status in hemodialysis patients?
    Sabaghian T; Hajibaratali B; Samavat S
    Ren Fail; 2016 Nov; 38(10):1659-1664. PubMed ID: 27764980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hemoglobin changes at the initiation of high-flux hemodialysis.
    Sombolos K; Christidou F; Bamichas G; Gionanlis L; Karagianni A; Fytili C; Natse T
    Nephron Clin Pract; 2007; 105(1):c29-34. PubMed ID: 17114900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel method for dry weight assessment in hemodialysis patients: utilization of inferior vena cava flat ratio to correct for individual variations in vessel diameter.
    Naruse M; Sakaguchi S; Nakayama Y; Nonoguchi H; Tomita K
    Ther Apher Dial; 2007 Feb; 11(1):42-8. PubMed ID: 17309574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.