BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 8842196)

  • 1. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.
    Ben-Tal N; Honig B; Peitzsch RM; Denisov G; McLaughlin S
    Biophys J; 1996 Aug; 71(2):561-75. PubMed ID: 8842196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles.
    Ben-Tal N; Honig B; Miller C; McLaughlin S
    Biophys J; 1997 Oct; 73(4):1717-27. PubMed ID: 9336168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
    Peitzsch RM; Eisenberg M; Sharp KA; McLaughlin S
    Biophys J; 1995 Mar; 68(3):729-38. PubMed ID: 7756540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids.
    Montich G; Scarlata S; McLaughlin S; Lehrmann R; Seelig J
    Biochim Biophys Acta; 1993 Feb; 1146(1):17-24. PubMed ID: 8443223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of peptides with basic residues to membranes containing acidic phospholipids.
    Kim J; Mosior M; Chung LA; Wu H; McLaughlin S
    Biophys J; 1991 Jul; 60(1):135-48. PubMed ID: 1883932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes.
    Mosior M; McLaughlin S
    Biophys J; 1991 Jul; 60(1):149-59. PubMed ID: 1883933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatics and the membrane association of Src: theory and experiment.
    Murray D; Hermida-Matsumoto L; Buser CA; Tsang J; Sigal CT; Ben-Tal N; Honig B; Resh MD; McLaughlin S
    Biochemistry; 1998 Feb; 37(8):2145-59. PubMed ID: 9485361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alzheimer beta-amyloid peptide 25-35: electrostatic interactions with phospholipid membranes.
    Terzi E; Hölzemann G; Seelig J
    Biochemistry; 1994 Jun; 33(23):7434-41. PubMed ID: 8003508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Thermodynamics of myr-Src(2-19) Binding to Phospholipid Membranes.
    Scheidt HA; Klingler J; Huster D; Keller S
    Biophys J; 2015 Aug; 109(3):586-94. PubMed ID: 26244740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides.
    Victor KG; Cafiso DS
    Biophys J; 2001 Oct; 81(4):2241-50. PubMed ID: 11566794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence.
    Soekarjo M; Eisenhawer M; Kuhn A; Vogel H
    Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin.
    Kim J; Blackshear PJ; Johnson JD; McLaughlin S
    Biophys J; 1994 Jul; 67(1):227-37. PubMed ID: 7918991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding.
    Khan HM; He T; Fuglebakk E; Grauffel C; Yang B; Roberts MF; Gershenson A; Reuter N
    Biophys J; 2016 Mar; 110(6):1367-78. PubMed ID: 27028646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.