BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 8842223)

  • 1. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):848-57. PubMed ID: 8842223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy.
    Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
    Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2006 Jun; 90(11):4093-103. PubMed ID: 16565064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials.
    Salamon Z; Tollin G
    J Bioenerg Biomembr; 1997 Jun; 29(3):211-21. PubMed ID: 9298706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of electron transfer kinetics between redox proteins free in solution and electrostatically complexed to a lipid bilayer membrane.
    Cheddar G; Tollin G
    Arch Biochem Biophys; 1994 May; 310(2):392-6. PubMed ID: 8179324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled plasmon-waveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes.
    Salamon Z; Huang D; Cramer WA; Tollin G
    Biophys J; 1998 Oct; 75(4):1874-85. PubMed ID: 9746528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics in a protein-lipid complex: nuclear magnetic resonance measurements on the headgroup of cardiolipin when bound to cytochrome c.
    Spooner PJ; Duralski AA; Rankin SE; Pinheiro TJ; Watts A
    Biophys J; 1993 Jul; 65(1):106-12. PubMed ID: 8396450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.
    Seelig A; Seelig J
    Biochim Biophys Acta; 1985 May; 815(2):153-8. PubMed ID: 2986692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of protein molecule conformation on the character of its interaction with a phospholipid bilayer].
    Obraztsov VV; Selishcheva AA; Kozlov IuP
    Biofizika; 1983; 28(3):412-7. PubMed ID: 6307396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ESR spin-label studies of lipid-protein interactions in membranes.
    Marsh D; Watts A; Pates RD; Uhl R; Knowles PF; Esmann M
    Biophys J; 1982 Jan; 37(1):265-74. PubMed ID: 6275924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cytochrome c oxidase on lipid polymorphism of model membranes containing cardiolipin.
    Rietveld A; van Kemenade TJ; Hak T; Verkleij AJ; de Kruijff B
    Eur J Biochem; 1987 Apr; 164(1):137-40. PubMed ID: 3030748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength.
    Sinibaldi F; Fiorucci L; Patriarca A; Lauceri R; Ferri T; Coletta M; Santucci R
    Biochemistry; 2008 Jul; 47(26):6928-35. PubMed ID: 18540683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-label studies on the specificity of interaction of cardiolipin with beef heart cytochrome oxidase.
    Powell GL; Knowles PF; Marsh D
    Biochemistry; 1987 Dec; 26(25):8138-45. PubMed ID: 2831938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of cytochrome c with cardiolipin: an infrared spectroscopic study.
    Choi S; Swanson JM
    Biophys Chem; 1995 May; 54(3):271-8. PubMed ID: 7749061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study.
    Gorbenko GP; Domanov YA
    Biophys Chem; 2003 Mar; 103(3):239-49. PubMed ID: 12727286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles.
    Pinheiro TJ; Elöve GA; Watts A; Roder H
    Biochemistry; 1997 Oct; 36(42):13122-32. PubMed ID: 9335575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of individual lipids in mixed phospholipid membranes and specific lipid-cytochrome c interactions by magic-angle spinning solid-state phosphorus-31 NMR.
    Pinheiro TJ; Watts A
    Biochemistry; 1994 Mar; 33(9):2459-67. PubMed ID: 8117706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional binding of cardiolipin to cytochrome c oxidase.
    Robinson NC
    J Bioenerg Biomembr; 1993 Apr; 25(2):153-63. PubMed ID: 8389748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.