These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8842239)

  • 1. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.
    Brandes R; Bers DM
    Biophys J; 1996 Aug; 71(2):1024-35. PubMed ID: 8842239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the mechanisms of mitochondrial NADH regulation in cardiac trabeculae.
    Brandes R; Bers DM
    Biophys J; 1999 Sep; 77(3):1666-82. PubMed ID: 10465777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of mitochondrial [NADH] by cytosolic [Ca2+] and work in trabeculae from hypertrophic and normal rat hearts.
    Brandes R; Maier LS; Bers DM
    Circ Res; 1998 Jun; 82(11):1189-98. PubMed ID: 9633918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae.
    Brandes R; Bers DM
    Biophys J; 2002 Aug; 83(2):587-604. PubMed ID: 12124250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity.
    Wüst RC; Helmes M; Stienen GJ
    J Physiol; 2015 Apr; 593(8):1829-40. PubMed ID: 25640645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply.
    White RL; Wittenberg BA
    Biophys J; 1993 Jul; 65(1):196-204. PubMed ID: 8369428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle.
    Brandes R; Bers DM
    Circ Res; 1997 Jan; 80(1):82-7. PubMed ID: 8978326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacing rate, halothane, and BDM affect fura 2 reporting of [Ca2+]i in intact rat trabeculae.
    Jiang Y; Julian FJ
    Am J Physiol; 1997 Dec; 273(6):C2046-56. PubMed ID: 9435512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells.
    White RL; Wittenberg BA
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1849-57. PubMed ID: 11009472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes.
    Jo H; Noma A; Matsuoka S
    J Mol Cell Cardiol; 2006 Mar; 40(3):394-404. PubMed ID: 16480740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial NADH in the Langendorff rat heart decreases in response to increases in work: increase of cardiac work is associated with decrease of mitochondrial NADH.
    Ashruf JF; Coremans JM; Bruining HA; Ince C
    Adv Exp Med Biol; 1996; 388():275-82. PubMed ID: 8798823
    [No Abstract]   [Full Text] [Related]  

  • 14. Increase of cardiac work is associated with decrease of mitochondrial NADH.
    Ashruf JF; Coremans JM; Bruining HA; Ince C
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H856-62. PubMed ID: 7573528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH fluorescence in isolated guinea-pig and rat cardiomyocytes exposed to low or high stimulation rates and effect of metabolic inhibition with cyanide.
    Griffiths EJ; Lin H; Suleiman MS
    Biochem Pharmacol; 1998 Jul; 56(2):173-9. PubMed ID: 9698070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.
    Eng J; Lynch RM; Balaban RS
    Biophys J; 1989 Apr; 55(4):621-30. PubMed ID: 2720061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of mitochondrial impairment during cardiac allograft rejection.
    Duboc D; Abastado P; Muffat-Joly M; Perrier P; Toussaint M; Marsac C; Francois D; Lavergne T; Pocidalo JJ; Guerin F
    Transplantation; 1990 Nov; 50(5):751-5. PubMed ID: 2238049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence.
    Scott DA; Grotyohann LW; Cheung JY; Scaduto RC
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H636-44. PubMed ID: 8067419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.