BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8842242)

  • 1. Measurement of membrane potential and [Ca2+]i in cell ensembles: application to the study of glutamate taste in mice.
    Hayashi Y; Zviman MM; Brand JG; Teeter JH; Restrepo D
    Biophys J; 1996 Aug; 71(2):1057-70. PubMed ID: 8842242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential.
    Gross E; Bedlack RS; Loew LM
    Biophys J; 1994 Jul; 67(1):208-16. PubMed ID: 7918989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface.
    Osakai T; Sawada J; Nagatani H
    Anal Bioanal Chem; 2009 Oct; 395(4):1055-61. PubMed ID: 19588129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons.
    Zhang J; Davidson RM; Wei MD; Loew LM
    Biophys J; 1998 Jan; 74(1):48-53. PubMed ID: 9449308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye.
    Beach JM; McGahren ED; Xia J; Duling BR
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2216-27. PubMed ID: 8764277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential.
    Vitha MF; Clarke RJ
    Biochim Biophys Acta; 2007 Jan; 1768(1):107-14. PubMed ID: 16904627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of membrane potential and intracellular Ca(2+) of arteriolar endothelium and smooth muscle in vivo.
    Chen Y; Rivers RJ
    Microvasc Res; 2001 Jul; 62(1):55-62. PubMed ID: 11421660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.
    Huang YA; Grant J; Roper S
    PLoS One; 2012; 7(1):e30662. PubMed ID: 22292013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.
    Pal Choudhuri S; Delay RJ; Delay ER
    PLoS One; 2015; 10(6):e0130088. PubMed ID: 26110622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses to glutamate in rat taste cells.
    Bigiani A; Delay RJ; Chaudhari N; Kinnamon SC; Roper SD
    J Neurophysiol; 1997 Jun; 77(6):3048-59. PubMed ID: 9212256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-wavelength ratiometric fluorescence measurements of membrane potential.
    Montana V; Farkas DL; Loew LM
    Biochemistry; 1989 May; 28(11):4536-9. PubMed ID: 2765500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spectral study of voltage sensitive dye di-4-ANEPPS].
    Xu ZH; Zhang ZX; Wang J; Zhang H; Li Z; Jin YS; Ding HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1359-62. PubMed ID: 17944414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of cytoplasmic calcium concentration in Dryopteris spores: a developmentally non-disruptive technique for loading of the calcium indicator fura-2.
    Scheuerlein R; Schmidt K; Poenie M; Roux SJ
    Planta; 1991; 184():166-74. PubMed ID: 11538116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.
    Kim AM; Vergara JL
    Biophys J; 1998 Oct; 75(4):2098-116. PubMed ID: 9746552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in beagle dog left ventricular midmyocardial myocytes.
    Hardy ME; Pollard CE; Small BG; Bridgland-Taylor M; Woods AJ; Valentin JP; Abi-Gerges N
    J Pharmacol Toxicol Methods; 2009; 60(1):94-106. PubMed ID: 19414070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence emission spectral shift measurements of membrane potential in single cells.
    Kao WY; Davis CE; Kim YI; Beach JM
    Biophys J; 2001 Aug; 81(2):1163-70. PubMed ID: 11463657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-photon microscopy of cell types in the viable taste disk of the frog.
    Li JH; Lindemann B
    Cell Tissue Res; 2003 Jul; 313(1):11-27. PubMed ID: 12827491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposomes as model for taste cells: receptor sites for bitter substances including N-C=S substances and mechanism of membrane potential changes.
    Kumazawa T; Nomura T; Kurihara K
    Biochemistry; 1988 Feb; 27(4):1239-44. PubMed ID: 3365384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrostatic pressure to 400 atm does not induce changes in the cytosolic concentration of Ca2+ in mouse fibroblasts: measurements using fura-2 fluorescence.
    Crenshaw HC; Salmon ED
    Exp Cell Res; 1996 Sep; 227(2):277-84. PubMed ID: 8831566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?
    Hardy ME; Lawrence CL; Standen NB; Rodrigo GC
    J Pharmacol Toxicol Methods; 2006; 54(2):173-82. PubMed ID: 16632384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.