BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8843161)

  • 21. Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus.
    Plohl M; Ugarković D
    J Mol Evol; 1994 Nov; 39(5):489-95. PubMed ID: 7807538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a highly conserved satellite DNA sequence specific for the phytoparasitic nematode Bursaphelenchus xylophilus.
    Tarès S; Lemontey JM; de Guiran G; Abad P
    Gene; 1993 Jul; 129(2):269-73. PubMed ID: 7686872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and chromosomal distribution of novel satellite DNA sequences of the lesser rhea (Pterocnemia pennata) and the greater rhea (Rhea americana).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosome Res; 2002; 10(6):513-23. PubMed ID: 12489832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins.
    Manzon RG; Neuls TM; Manzon LA
    Gen Comp Endocrinol; 2007 Mar; 151(1):55-65. PubMed ID: 17223110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species.
    Ceccarelli M; Sarri V; Polizzi E; Andreozzi G; Cionini PG
    Cytogenet Genome Res; 2010 Jun; 128(4):236-44. PubMed ID: 20424423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cloned fragment of HeLa DNA containing consensus sequences of satellite II and III DNA hybridizes with the Drosophila P-element and with the 1.8 kb family of human KpnI fragments.
    Sol K; Lapointe M; MacLeod M; Nadeau C; DuBow MS
    Biochim Biophys Acta; 1986 Nov; 868(2-3):128-35. PubMed ID: 3021224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cytogenetic study of heterochromatin in Hisonotus leucofrenatus (Teleostei, Loricariidae, Hypoptopomatinae).
    Andreata AA; Ferreira DC; Foresti F; Oliveira C
    Hereditas; 2010 Feb; 147(1):10-7. PubMed ID: 20416012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a new HpaI centromeric satellite DNA in Salmo salar.
    Viñas A; Abuín M; Pardo BG; Martínez P; Sánchez L
    Genetica; 2004 May; 121(1):81-7. PubMed ID: 15098740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates.
    Square T; Romášek M; Jandzik D; Cattell MV; Klymkowsky M; Medeiros DM
    Development; 2015 Dec; 142(23):4180-7. PubMed ID: 26511928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of ancient satellite DNAs in sturgeon genomes.
    Robles F; de la Herrán R; Ludwig A; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA
    Gene; 2004 Aug; 338(1):133-42. PubMed ID: 15302414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae).
    Anamthawat-Jónsson K; Wenke T; Thórsson AT; Sveinsson S; Zakrzewski F; Schmidt T
    Genome; 2009 Apr; 52(4):381-90. PubMed ID: 19370093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact.
    Ciobanu D; Grechko VV; Darevsky IS; Kramerov DA
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):505-16. PubMed ID: 15390352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF; Ballarati L; Ventura M; Rocchi M; Marozzi A; Ginelli E; Meneveri R
    Mol Biol Evol; 2004 Sep; 21(9):1792-9. PubMed ID: 15201396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning of an equine satellite-type DNA sequence and its chromosomal localization.
    Sakagami M; Hirota K; Awata T; Yasue H
    Cytogenet Cell Genet; 1994; 66(1):27-30. PubMed ID: 8275703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Common origin of the satellite DNAs of the Hawaiian spiders of the genus Tetragnatha: evolutionary constraints on the length and nucleotide composition of the repeats.
    Pons J; Gillespie RG
    Gene; 2003 Aug; 313():169-77. PubMed ID: 12957388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes).
    Garrido-Ramos MA; de la Herrán R; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Mol Phylogenet Evol; 1999 Jul; 12(2):200-4. PubMed ID: 10381322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae).
    Palomeque T; Muñoz-López M; Carrillo JA; Lorite P
    Chromosome Res; 2005; 13(8):795-807. PubMed ID: 16331411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.