These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8843653)
1. Differentiation processes in the amphibian brain with special emphasis on heterochronies. Schmidt A; Roth G Int Rev Cytol; 1996; 169():83-150. PubMed ID: 8843653 [TBL] [Abstract][Full Text] [Related]
2. The Influence of Genome and Cell Size on Brain Morphology in Amphibians. Roth G; Walkowiak W Cold Spring Harb Perspect Biol; 2015 Aug; 7(9):a019075. PubMed ID: 26261281 [TBL] [Abstract][Full Text] [Related]
3. [Evolution of brain development in amphibians]. Savel'ev SV Izv Akad Nauk Ser Biol; 2009; (2):167-78. PubMed ID: 19391475 [TBL] [Abstract][Full Text] [Related]
4. Cellular migration and morphological complexity in the caecilian brain. Schmidt A; Wake MH J Morphol; 1997 Jan; 231(1):11-27. PubMed ID: 29852703 [TBL] [Abstract][Full Text] [Related]
5. Fetal adaptations for viviparity in amphibians. Wake MH J Morphol; 2015 Aug; 276(8):941-60. PubMed ID: 24643944 [TBL] [Abstract][Full Text] [Related]
6. [The mechanism of encoding the position information by neuroepithelial cells from the brain of amphibian embryos]. Savel'ev SV Dokl Akad Nauk SSSR; 1988; 301(6):1479-83. PubMed ID: 3224549 [No Abstract] [Full Text] [Related]
7. Left and right in the amphibian world: which way to develop and where to turn? Malashichev YB; Wassersug RJ Bioessays; 2004 May; 26(5):512-22. PubMed ID: 15112231 [TBL] [Abstract][Full Text] [Related]
8. Paedomorphosis and simplification in the nervous system of salamanders. Roth G; Nishikawa KC; Naujoks-Manteuffel C; Schmidt A; Wake DB Brain Behav Evol; 1993; 42(3):137-70. PubMed ID: 8364715 [TBL] [Abstract][Full Text] [Related]
9. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). González A; López JM; Sánchez-Camacho C; Marín O J Comp Neurol; 2002 Jul; 448(3):249-67. PubMed ID: 12115707 [TBL] [Abstract][Full Text] [Related]
10. The importance of cartilage to amphibian development and evolution. Rose CS Int J Dev Biol; 2014; 58(10-12):917-27. PubMed ID: 26154332 [TBL] [Abstract][Full Text] [Related]
11. Induction of neural differentiation in cultures of amphibian undetermined presumptive epidermis by cyclic AMP derivatives. Wahn HL; Lightbody LE; Tchen TT; Taylor JD Science; 1975 Apr; 188(4186):366-9. PubMed ID: 164060 [TBL] [Abstract][Full Text] [Related]
12. FMRFamide in the amphibian brain: a comprehensive survey. Rastogi RK; D'Aniello B; Pinelli C; Fiorentino M; Di Fiore MM; Di Meglio M; Iela L Microsc Res Tech; 2001 Aug; 54(3):158-72. PubMed ID: 11458399 [TBL] [Abstract][Full Text] [Related]
13. Development of the tectum in Gymnophiones, with comparison to other amphibians. Schmidt A; Wake MH J Morphol; 1998 Jun; 236(3):233-246. PubMed ID: 29852675 [TBL] [Abstract][Full Text] [Related]
14. Pattern formation in early developmental stages of amphibian embryos. Tiedemann H J Embryol Exp Morphol; 1976 Jun; 35(3):437-44. PubMed ID: 781172 [TBL] [Abstract][Full Text] [Related]
15. Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. Hartigan A; Wilkinson M; Gower DJ; Streicher JW; Holzer AS; Okamura B Int J Parasitol; 2016 May; 46(5-6):375-81. PubMed ID: 26945641 [TBL] [Abstract][Full Text] [Related]
16. Work in progress: the renaissance in amphibian embryology. Malacinski GM; Ariizumi T; Asashima M Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):179-87. PubMed ID: 10874165 [TBL] [Abstract][Full Text] [Related]
17. Morphogenic machines evolve more rapidly than the signals that pattern them: lessons from amphibians. Shook DR; Keller R J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):111-35. PubMed ID: 18041048 [TBL] [Abstract][Full Text] [Related]