These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8843718)

  • 1. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse.
    Wiseman RW; Beck TW; Chase PB
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C878-86. PubMed ID: 8843718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature.
    Westerblad H; Bruton JD; Lännergren J
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):193-204. PubMed ID: 9097943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle.
    Adams GR; Fisher MJ; Meyer RA
    Am J Physiol; 1991 Apr; 260(4 Pt 1):C805-12. PubMed ID: 2018112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2(*-) production at 37 degrees C plays a critical role in depressing tetanic force of isolated rat and mouse skeletal muscle.
    Edwards JN; Macdonald WA; van der Poel C; Stephenson DG
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C650-60. PubMed ID: 17459949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.
    Knuth ST; Dave H; Peters JR; Fitts RH
    J Physiol; 2006 Sep; 575(Pt 3):887-99. PubMed ID: 16809373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C.
    Bruton JD; Lännergren J; Westerblad H
    J Appl Physiol (1985); 1998 Aug; 85(2):478-83. PubMed ID: 9688723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle.
    Meyer RA; Adams GR; Fisher MJ; Dillon PF; Krisanda JM; Brown TR; Kushmerick MJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):305-10. PubMed ID: 1905190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of carbon dioxide on tetanic contraction of frog skeletal muscles studied by phosphorus nuclear magnetic resonance.
    Nakamura T; Yamada K
    J Physiol; 1992; 453():247-59. PubMed ID: 1464830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidosis has no effect on the ATP cost of contraction in cat fast- and slow-twitch skeletal muscles.
    Harkema SJ; Adams GR; Meyer RA
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C485-90. PubMed ID: 9124291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue.
    Pate E; Bhimani M; Franks-Skiba K; Cooke R
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):689-94. PubMed ID: 7473229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    J Appl Physiol (1985); 1998 Apr; 84(4):1395-406. PubMed ID: 9516209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers.
    Maughan DW; Molloy JE; Brotto MA; Godt RE
    Biophys J; 1995 Oct; 69(4):1484-90. PubMed ID: 8534819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber type and temperature dependence of inorganic phosphate: implications for fatigue.
    Debold EP; Dave H; Fitts RH
    Am J Physiol Cell Physiol; 2004 Sep; 287(3):C673-81. PubMed ID: 15128502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle.
    Westerblad H; Allen DG
    J Physiol; 1993 Jul; 466():611-28. PubMed ID: 8410709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.