These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 8843923)
1. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of a reduced glutathione transporter in the lens. Kannan R; Yi JR; Zlokovic BV; Kaplowitz N Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1785-92. PubMed ID: 7635653 [TBL] [Abstract][Full Text] [Related]
3. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes. Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486 [TBL] [Abstract][Full Text] [Related]
4. Bidirectional glutathione transport by cultured human retinal pigment epithelial cells. Lu SC; Sun WM; Nagineni CN; Hooks JJ; Kannan R Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2523-30. PubMed ID: 7591642 [TBL] [Abstract][Full Text] [Related]
5. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport. Kannan R; Tang D; Hu J; Bok D Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154 [TBL] [Abstract][Full Text] [Related]
6. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium. Li B; Li L; Donaldson PJ; Lim JC Exp Eye Res; 2010 Feb; 90(2):300-7. PubMed ID: 19941852 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the existence of a sodium-dependent glutathione (GSH) transporter. Expression of bovine brain capillary mRNA and size fractions in Xenopus laevis oocytes and dissociation from gamma-glutamyltranspeptidase and facilitative GSH transporters. Kannan R; Yi JR; Tang D; Li Y; Zlokovic BV; Kaplowitz N J Biol Chem; 1996 Apr; 271(16):9754-8. PubMed ID: 8621654 [TBL] [Abstract][Full Text] [Related]
8. Functional re-evaluation of the putative glutathione transporters, RcGshT and RsGshT. Li L; Lee TK; Ballatori N Yale J Biol Med; 1997; 70(4):301-10. PubMed ID: 9626750 [TBL] [Abstract][Full Text] [Related]
9. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye. Zlokovic BV; Mackic JB; McComb JG; Kaplowitz N; Weiss MH; Kannan R Exp Eye Res; 1994 Oct; 59(4):487-96. PubMed ID: 7859824 [TBL] [Abstract][Full Text] [Related]
10. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium. Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280 [TBL] [Abstract][Full Text] [Related]
11. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers. Gukasyan HJ; Lee VH; Kim KJ; Kannan R Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260 [TBL] [Abstract][Full Text] [Related]
12. GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. Kannan R; Mittur A; Bao Y; Tsuruo T; Kaplowitz N J Neurochem; 1999 Jul; 73(1):390-9. PubMed ID: 10386992 [TBL] [Abstract][Full Text] [Related]
13. Specificity and directionality of thiol effects on sinusoidal glutathione transport in rat liver. Lu SC; Kuhlenkamp J; Ge JL; Sun WM; Kaplowitz N Mol Pharmacol; 1994 Sep; 46(3):578-85. PubMed ID: 7935341 [TBL] [Abstract][Full Text] [Related]
14. Transport of circulating reduced glutathione at the basolateral side of the anterior lens epithelium: physiologic importance and manipulations. Mackic JB; Jinagouda S; McComb JG; Weiss MH; Kannan R; Kaplowitz N; Zlokovic BV Exp Eye Res; 1996 Jan; 62(1):29-37. PubMed ID: 8674510 [TBL] [Abstract][Full Text] [Related]
15. Inducible expression of Na+/myo-inositol cotransporter mRNA in anterior epithelium of bovine lens: affiliation with hypertonicity and cell proliferation. Cammarata PR; Xu GT; Huang L; Zhou C; Martin M Exp Eye Res; 1997 May; 64(5):745-57. PubMed ID: 9245905 [TBL] [Abstract][Full Text] [Related]
16. Alterations in glutathione homeostasis in mutant Eisai hyperbilirubinemic rats. Lu SC; Cai J; Kuhlenkamp J; Sun WM; Takikawa H; Takenaka O; Horie T; Yi J; Kaplowitz N Hepatology; 1996 Jul; 24(1):253-8. PubMed ID: 8707271 [TBL] [Abstract][Full Text] [Related]
17. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat. Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774 [TBL] [Abstract][Full Text] [Related]
18. Expression of rat liver cell membrane transporters for thyroid hormone in Xenopus laevis oocytes. Docter R; Friesema EC; van Stralen PG; Krenning EP; Everts ME; Visser TJ; Hennemann G Endocrinology; 1997 May; 138(5):1841-6. PubMed ID: 9112377 [TBL] [Abstract][Full Text] [Related]
19. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. García-Ruiz C; Morales A; Colell A; Rodés J; Yi JR; Kaplowitz N; Fernández-Checa JC J Biol Chem; 1995 Jul; 270(27):15946-9. PubMed ID: 7608148 [TBL] [Abstract][Full Text] [Related]