BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8844832)

  • 1. Engineering of DNA binding proteins into site-specific cutters: reactivity of Trp repressor-1,10-phenanthroline chimeras.
    Landgraf R; Pan C; Sutton C; Pearson L; Sigman DS
    Protein Eng; 1996 Jul; 9(7):603-10. PubMed ID: 8844832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming the Escherichia coli Trp repressor into a site-specific nuclease.
    Sutton CL; Mazumder A; Chen CH; Sigman DS
    Biochemistry; 1993 Apr; 32(16):4225-30. PubMed ID: 8476849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical conversion of a DNA-binding protein into a site-specific nuclease.
    Chen CH; Sigman DS
    Science; 1987 Sep; 237(4819):1197-201. PubMed ID: 2820056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes.
    Jaseja M; Jeeves M; Hyde EI
    Biochemistry; 2002 Dec; 41(50):14866-78. PubMed ID: 12475235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro studies of TrpR-DNA interactions.
    Yang J; Gunasekera A; Lavoie TA; Jin L; Lewis DE; Carey J
    J Mol Biol; 1996 Apr; 258(1):37-52. PubMed ID: 8613990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding.
    Shan X; Gardner KH; Muhandiram DR; Kay LE; Arrowsmith CH
    J Biomol NMR; 1998 Apr; 11(3):307-18. PubMed ID: 9691278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of a noncovalent trp repressor: DNA operator complex by electrospray ionization time-of-flight mass spectrometry.
    Potier N; Donald LJ; Chernushevich I; Ayed A; Ens W; Arrowsmith CH; Standing KG; Duckworth HW
    Protein Sci; 1998 Jun; 7(6):1388-95. PubMed ID: 9655343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences.
    Jeeves M; Evans PD; Parslow RA; Jaseja M; Hyde EI
    Eur J Biochem; 1999 Nov; 265(3):919-28. PubMed ID: 10518785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine to cysteine mutations in trp repressor protein alter tryptophan and operator binding.
    Chou WY; Matthews KS
    J Biol Chem; 1989 Nov; 264(31):18314-9. PubMed ID: 2509454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae.
    Arvidson DN; Arvidson CG; Lawson CL; Miner J; Adams C; Youderian P
    Nucleic Acids Res; 1994 May; 22(10):1821-9. PubMed ID: 8208606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size.
    Liu YC; Matthews KS
    J Biol Chem; 1993 Nov; 268(31):23239-49. PubMed ID: 8226846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclease activity of 1,10-phenanthroline-copper. New conjugates with low molecular weight targeting ligands.
    Chen CH; Mazumder A; Constant JF; Sigman DS
    Bioconjug Chem; 1993; 4(1):69-77. PubMed ID: 7679292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms.
    Tripet BP; Goel A; Copie V
    Biochemistry; 2011 Jun; 50(23):5140-53. PubMed ID: 21553830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trp repressor interaction with bromodeoxyuridine-substituted operators alters UV-induced perturbation pattern in a sequence-dependent manner.
    Liu YC; Matthews KS
    Biochemistry; 1993 Oct; 32(40):10532-42. PubMed ID: 8399199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A site-specific endonuclease derived from a mutant Trp repressor with altered DNA-binding specificity.
    Pfau J; Arvidson DN; Youderian P; Pearson LL; Sigman DS
    Biochemistry; 1994 Sep; 33(37):11391-403. PubMed ID: 7727390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification.
    Gallagher J; Chen CH; Pan CQ; Perrin DM; Cho YM; Sigman DS
    Bioconjug Chem; 1996; 7(4):413-20. PubMed ID: 8853454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis in vivo of factors affecting the control of transcription initiation at promoters containing target sites for trp repressor.
    Bogosian G; Somerville RL
    Mol Gen Genet; 1984; 193(1):110-8. PubMed ID: 6318045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila engrailed-1,10-phenanthroline chimeras as probes of homeodomain-DNA complexes.
    Pan CQ; Landgraf R; Sigman DS
    Protein Sci; 1995 Nov; 4(11):2279-88. PubMed ID: 8563624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the Escherichia coli tryptophan repressor protein by engineered peptides.
    Fenton C; Hansen A; el-Gewely MR
    Biochem Biophys Res Commun; 1998 Jan; 242(1):71-8. PubMed ID: 9439612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.