These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 884547)

  • 1. Reticular influences on lateralis posterior thalamic neurons.
    Steriade M; Oakson G; Diallo A
    Brain Res; 1977 Aug; 131(1):55-71. PubMed ID: 884547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some synaptic inputs and ascending projections of lateralis posterior thalamic neurons.
    Steriade M; Diallo A; Oakson G; White-Guay B
    Brain Res; 1977 Aug; 131(1):39-53. PubMed ID: 884546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states.
    Glenn LL; Steriade M
    J Neurosci; 1982 Oct; 2(10):1387-404. PubMed ID: 7119864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reticular influences on primary and augmenting responses in the somatosensory cortex.
    Steriade M; Morin D
    Brain Res; 1981 Jan; 205(1):67-80. PubMed ID: 6258711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings.
    Koizumi K; Yamashita H
    J Physiol; 1972 Mar; 221(3):683-705. PubMed ID: 5016366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamocortical and intrathalamic interactions during slow repetitive stimulation of n. centralis lateralis.
    Jibiki I; Avoli M; Gloor P; Giaretta D; McLachlan RS
    Exp Brain Res; 1986; 61(2):245-57. PubMed ID: 3948939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesencephalic and bulbar reticular influences on somatosensory cortical neurons: short- and long-latency effects.
    Schieppati M; Mariotti M; Mohan Kumar V; Mancia M
    Sleep; 1983; 6(3):186-95. PubMed ID: 6622877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep.
    Steriade M; Sakai K; Jouvet M
    Exp Brain Res; 1984; 54(3):463-75. PubMed ID: 6723865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex.
    Yingling CD; Skinner JE
    Electroencephalogr Clin Neurophysiol; 1975 Dec; 39(6):635-42. PubMed ID: 53142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential participation of some 'specific' and 'non-specific' thalamic nuclei in generalized spike and wave discharges of feline generalized penicillin epilepsy.
    McLachlan RS; Gloor P; Avoli M
    Brain Res; 1984 Jul; 307(1-2):277-87. PubMed ID: 6466997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle.
    Steriade M; Oakson G; Ropert N
    Exp Brain Res; 1982; 46(1):37-51. PubMed ID: 7067790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems.
    Steriade M; Datta S; Paré D; Oakson G; Curró Dossi RC
    J Neurosci; 1990 Aug; 10(8):2541-59. PubMed ID: 2388079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of 40-Hz firing of reticular thalamic cells by neurotransmitters.
    Pinault D; Deschênes M
    Neuroscience; 1992 Nov; 51(2):259-68. PubMed ID: 1361219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethosuximide alters intrathalamic and thalamocortical synchronizing mechanisms: a possible explanation of its antiabsence effect.
    Pellegrini A; Dossi RC; Dal Pos F; Ermani M; Zanotto L; Testa G
    Brain Res; 1989 Sep; 497(2):344-60. PubMed ID: 2819430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortically elicited spike-wave after discharges in thalamic neurons.
    Steriade M; Oakson G; Diallo A
    Electroencephalogr Clin Neurophysiol; 1976 Dec; 41(6):641-4. PubMed ID: 62658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami.
    Steriade M; Deschênes M; Domich L; Mulle C
    J Neurophysiol; 1985 Dec; 54(6):1473-97. PubMed ID: 4087044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain stem reticular formation and activation of the EEG.
    Moruzzi G; Magoun HW
    Electroencephalogr Clin Neurophysiol; 1949 Nov; 1(4):455-73. PubMed ID: 18421835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesencephalic and bulbar reticular formation influences on somatosensory transmission through the thalamus.
    Schieppati M; Mariotti M; Arosio M; Cenzato M
    Electroencephalogr Clin Neurophysiol; 1982 Mar; 53(3):338-42. PubMed ID: 6174311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.