These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 8845516)

  • 1. Cytoskeletal changes in osteoclasts during the resorption cycle.
    Lakkakorpi PT; Väänänen HK
    Microsc Res Tech; 1996 Feb; 33(2):171-81. PubMed ID: 8845516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro.
    Lakkakorpi PT; Väänänen HK
    J Bone Miner Res; 1991 Aug; 6(8):817-26. PubMed ID: 1664645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of osteoclast microfilaments during the attachment to bone surface in vitro.
    Lakkakorpi P; Tuukkanen J; Hentunen T; Järvelin K; Väänänen K
    J Bone Miner Res; 1989 Dec; 4(6):817-25. PubMed ID: 2692403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass.
    Turksen K; Kanehisa J; Opas M; Heersche JN; Aubin JE
    J Bone Miner Res; 1988 Aug; 3(4):389-400. PubMed ID: 3223354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast.
    Akisaka T; Yoshida H; Inoue S; Shimizu K
    J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of bone resorption in vitro by a peptide containing the cadherin cell adhesion recognition sequence HAV is due to prevention of sealing zone formation.
    Ilvesaro JM; Lakkakorpi PT; Väänänen HK
    Exp Cell Res; 1998 Jul; 242(1):75-83. PubMed ID: 9665804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular membrane trafficking in bone resorbing osteoclasts.
    Mulari M; Vääräniemi J; Väänänen HK
    Microsc Res Tech; 2003 Aug; 61(6):496-503. PubMed ID: 12879417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts.
    McMichael BK; Kotadiya P; Singh T; Holliday LS; Lee BS
    Bone; 2006 Oct; 39(4):694-705. PubMed ID: 16765662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption.
    Itzstein C; Espinosa L; Delmas PD; Chenu C
    Biochem Biophys Res Commun; 2000 Feb; 268(1):201-9. PubMed ID: 10652236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of osteoclast mediated bone resorption.
    Väänänen HK; Hentunen T; Lakkakorpi P; Parvinen EK; Sundqvist K; Tuukkanen J
    Ann Chir Gynaecol; 1988; 77(5-6):193-6. PubMed ID: 3076045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium.
    Lakkakorpi PT; Lehenkari PP; Rautiala TJ; Väänänen HK
    J Cell Physiol; 1996 Sep; 168(3):668-77. PubMed ID: 8816921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein tyrosine kinase inhibitors increase cytosolic calcium and inhibit actin organization as resorbing activity in rat osteoclasts.
    Kajiya H; Okabe K; Okamoto F; Tsuzuki T; Soeda H
    J Cell Physiol; 2000 Apr; 183(1):83-90. PubMed ID: 10699969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.
    Akisaka T; Yoshida H; Suzuki R; Takama K
    Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular dynamics of osteoclast adhesions.
    Luxenburg C; Addadi L; Geiger B
    Eur J Cell Biol; 2006 Apr; 85(3-4):203-11. PubMed ID: 16360241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation.
    Saltel F; Chabadel A; Bonnelye E; Jurdic P
    Eur J Cell Biol; 2008 Sep; 87(8-9):459-68. PubMed ID: 18294724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rac-GTPase, osteoclast cytoskeleton and bone resorption.
    Razzouk S; Lieberherr M; Cournot G
    Eur J Cell Biol; 1999 Apr; 78(4):249-55. PubMed ID: 10350213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regulation of osteoclastic bone resorption. 1. Limitation of osteoclast motile activity by fibroblast-like cells].
    Kanehisa J; Yu SF; Mori T; Furuhashi I; Kubo Y; Muto S; Kawarada M; Okamoto Y; Tokuhiro Y; Takeuchi H
    Gifu Shika Gakkai Zasshi; 1989 Dec; 16(2):427-40. PubMed ID: 2489443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts.
    Takito J; Nakamura M; Yoda M; Tohmonda T; Uchikawa S; Horiuchi K; Toyama Y; Chiba K
    J Cell Sci; 2012 Feb; 125(Pt 3):662-72. PubMed ID: 22349694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.