These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 8845518)

  • 1. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
    Landis WJ; Hodgens KJ; Song MJ; Arena J; Kiyonaga S; Marko M; Owen C; McEwen BF
    J Struct Biol; 1996; 117(1):24-35. PubMed ID: 8776885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography.
    McEwen BF; Song MJ; Landis WJ
    J Comput Assist Microsc; 1991; 3(4):201-10. PubMed ID: 11537967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of mineral structure in normally calcifying avian tendon.
    Siperko LM; Landis WJ
    J Struct Biol; 2001 Sep; 135(3):313-20. PubMed ID: 11722171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of vertebrate mineralization with emphasis on collagen-mineral interaction.
    Landis WJ
    Gravit Space Biol Bull; 1999 May; 12(2):15-26. PubMed ID: 11541779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging.
    Landis WJ; Song MJ
    J Struct Biol; 1991 Oct; 107(2):116-27. PubMed ID: 1807348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic imaging of mineral and collagen in the calcifying turkey tendon.
    Landis WJ; Moradian-Oldak J; Weiner S
    Connect Tissue Res; 1991; 25(3-4):181-96. PubMed ID: 1647935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image analysis of mineralized and non-mineralized type I collagen fibrils.
    Arsenault AL
    J Electron Microsc Tech; 1991 Jul; 18(3):262-8. PubMed ID: 1880599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralized microstructure of calcified avian tendons: a scanning small angle X-ray scattering study.
    Gupta HS; Roschger P; Zizak I; Fratzl-Zelman N; Nader A; Klaushofer K; Fratzl P
    Calcif Tissue Int; 2003 May; 72(5):567-76. PubMed ID: 12712306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primary calcification in bones follows removal of decorin and fusion of collagen fibrils.
    Hoshi K; Kemmotsu S; Takeuchi Y; Amizuka N; Ozawa H
    J Bone Miner Res; 1999 Feb; 14(2):273-80. PubMed ID: 9933482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy.
    Hoshi K; Ejiri S; Ozawa H
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.