These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 8845760)
1. Xylanase homology modeling using the inverse protein folding approach. Chen X; Whitmire D; Bowen JP Protein Sci; 1996 Apr; 5(4):705-8. PubMed ID: 8845760 [TBL] [Abstract][Full Text] [Related]
2. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Gruber K; Klintschar G; Hayn M; Schlacher A; Steiner W; Kratky C Biochemistry; 1998 Sep; 37(39):13475-85. PubMed ID: 9753433 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. Natesh R; Bhanumoorthy P; Vithayathil PJ; Sekar K; Ramakumar S; Viswamitra MA J Mol Biol; 1999 May; 288(5):999-1012. PubMed ID: 10329194 [TBL] [Abstract][Full Text] [Related]
4. The tertiary structure at 1.59 A resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. Kumar PR; Eswaramoorthy S; Vithayathil PJ; Viswamitra MA J Mol Biol; 2000 Jan; 295(3):581-93. PubMed ID: 10623548 [TBL] [Abstract][Full Text] [Related]
5. Structural basis of the properties of an industrially relevant thermophilic xylanase. Harris GW; Pickersgill RW; Connerton I; Debeire P; Touzel JP; Breton C; Pérez S Proteins; 1997 Sep; 29(1):77-86. PubMed ID: 9294868 [TBL] [Abstract][Full Text] [Related]
6. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Lo Leggio L; Kalogiannis S; Bhat MK; Pickersgill RW Proteins; 1999 Aug; 36(3):295-306. PubMed ID: 10409823 [TBL] [Abstract][Full Text] [Related]
7. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
8. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. Krengel U; Dijkstra BW J Mol Biol; 1996 Oct; 263(1):70-8. PubMed ID: 8890913 [TBL] [Abstract][Full Text] [Related]
11. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Solomon V; Teplitsky A; Shulami S; Zolotnitsky G; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):845-59. PubMed ID: 17642511 [TBL] [Abstract][Full Text] [Related]
12. The first crystal structure of a family 31 carbohydrate-binding module with affinity to beta-1,3-xylan. Hashimoto H; Tamai Y; Okazaki F; Tamaru Y; Shimizu T; Araki T; Sato M FEBS Lett; 2005 Aug; 579(20):4324-8. PubMed ID: 16061225 [TBL] [Abstract][Full Text] [Related]
13. Cloning of high activity xylanase gene from Bacillus pumilus PJ19. Hamzah A; Abdulrashid N J Biochem Mol Biol Biophys; 2002 Oct; 6(5):365-9. PubMed ID: 12385974 [TBL] [Abstract][Full Text] [Related]
14. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Gallardo O; Diaz P; Pastor FI Appl Microbiol Biotechnol; 2003 May; 61(3):226-33. PubMed ID: 12698280 [TBL] [Abstract][Full Text] [Related]
16. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Joshi MD; Hedberg A; McIntosh LP Protein Sci; 1997 Dec; 6(12):2667-70. PubMed ID: 9416621 [TBL] [Abstract][Full Text] [Related]
17. Structure of the xylanase from Penicillium simplicissimum. Schmidt A; Schlacher A; Steiner W; Schwab H; Kratky C Protein Sci; 1998 Oct; 7(10):2081-8. PubMed ID: 9792094 [TBL] [Abstract][Full Text] [Related]
18. Homology model of a novel xylanase: molecular basis for high-thermostability and alkaline stability. Mande SS; Gupta N; Ghosh A; Mande SC J Biomol Struct Dyn; 2000 Aug; 18(1):137-44. PubMed ID: 11021658 [TBL] [Abstract][Full Text] [Related]
19. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. Yang JH; Park JY; Kim SH; Yoo YJ J Biotechnol; 2008 Feb; 133(3):294-300. PubMed ID: 18077046 [TBL] [Abstract][Full Text] [Related]
20. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. Blair DE; van Aalten DM FEBS Lett; 2004 Jul; 570(1-3):13-9. PubMed ID: 15251431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]