BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 8845761)

  • 1. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase.
    Murata LB; Schachman HK
    Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: implications for domain switching.
    Murata LB; Schachman HK
    Protein Sci; 1996 Apr; 5(4):719-28. PubMed ID: 8845762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family.
    Villeret V; Tricot C; Stalon V; Dideberg O
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10762-6. PubMed ID: 7479879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains.
    Yang YR; Schachman HK
    Protein Sci; 1993 Jun; 2(6):1013-23. PubMed ID: 8318886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase.
    Peterson CB; Schachman HK
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):458-62. PubMed ID: 1899140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of an enzyme by domain substitution effectively switches substrate specificity.
    Houghton JE; O'Donovan GA; Wild JR
    Nature; 1989 Mar; 338(6211):172-4. PubMed ID: 2918938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA; Beernink PT
    Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains.
    Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11980-4. PubMed ID: 8265657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural modeling and electrostatic properties of aspartate transcarbamylase from Saccharomyces cerevisiae.
    Villoutreix BO; Spassov VZ; Atanasov BP; Hervé G; Ladjimi MM
    Proteins; 1994 Jul; 19(3):230-43. PubMed ID: 7937736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative modeling of mammalian aspartate transcarbamylase.
    Scully JL; Evans DR
    Proteins; 1991; 9(3):191-206. PubMed ID: 2006137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-induced conformational change in a trimeric ornithine transcarbamoylase.
    Ha Y; McCann MT; Tuchman M; Allewell NM
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9550-5. PubMed ID: 9275160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly.
    Zhang P; Schachman HK
    Protein Sci; 1996 Jul; 5(7):1290-300. PubMed ID: 8819162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assembly of aspartate transcarbamoylase from fragmented and circularly permuted catalytic polypeptide chains.
    Ni X; Schachman HK
    Protein Sci; 2001 Mar; 10(3):519-27. PubMed ID: 11344320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity.
    Nguyen VT; Baker DP; Tricot C; Baur H; Villeret V; Dideberg O; Gigot D; Stalon V; Haas D
    Eur J Biochem; 1996 Feb; 236(1):283-93. PubMed ID: 8617277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cooperative Escherichia coli aspartate transcarbamoylase without regulatory subunits .
    Mendes KR; Kantrowitz ER
    Biochemistry; 2010 Sep; 49(35):7694-703. PubMed ID: 20681545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.
    Powers VM; Yang YR; Fogli MJ; Schachman HK
    Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability.
    Peterson CB; Zhou BB; Hsieh D; Creager AN; Schachman HK
    Protein Sci; 1994 Jun; 3(6):960-6. PubMed ID: 8069225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    De Vos D; Van Petegem F; Remaut H; Legrain C; Glansdorff N; Van Beeumen JJ
    J Mol Biol; 2004 Jun; 339(4):887-900. PubMed ID: 15165857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational Plasticity of the Active Site Entrance in
    Lei Z; Wang N; Tan H; Zheng J; Jia Z
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis.
    Wente SR; Schachman HK
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.