BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8845967)

  • 21. Evolved RNA secondary structure and the rooting of the universal tree of life.
    Caetano-Anollés G
    J Mol Evol; 2002 Mar; 54(3):333-45. PubMed ID: 11847559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.
    Uhart M; Sirand-Pugnet P; Labarère J
    Res Microbiol; 2007 Apr; 158(3):203-12. PubMed ID: 17346935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eukaryotic ribosomes that lack a 5.8S RNA.
    Vossbrinck CR; Woese CR
    Nature; 1986 Mar 20-26; 320(6059):287-8. PubMed ID: 3083262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: implications for phylogeny reconstruction.
    Hancock JM; Vogler AP
    Mol Phylogenet Evol; 2000 Mar; 14(3):366-74. PubMed ID: 10712842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete sequence and gene organization of the Nosema spodopterae rRNA gene.
    Tsai SJ; Huang WF; Wang CH
    J Eukaryot Microbiol; 2005; 52(1):52-4. PubMed ID: 15702980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes.
    Vossbrinck CR; Maddox JV; Friedman S; Debrunner-Vossbrinck BA; Woese CR
    Nature; 1987 Mar 26-Apr 1; 326(6111):411-4. PubMed ID: 3550472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera).
    Xie Q; Tian Y; Zheng L; Bu W
    Mol Phylogenet Evol; 2008 May; 47(2):463-71. PubMed ID: 18358745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogeography and evolution of body size and life history of African frogs: phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data.
    Blackburn DC
    Mol Phylogenet Evol; 2008 Dec; 49(3):806-26. PubMed ID: 18804169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary structure prediction for aligned RNA sequences.
    Hofacker IL; Fekete M; Stadler PF
    J Mol Biol; 2002 Jun; 319(5):1059-66. PubMed ID: 12079347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The European ribosomal RNA database.
    Wuyts J; Perrière G; Van De Peer Y
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D101-3. PubMed ID: 14681368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous alignment and folding of 28S rRNA sequences uncovers phylogenetic signal in structure variation.
    Letsch HO; Greve C; Kück P; Fleck G; Stocsits RR; Misof B
    Mol Phylogenet Evol; 2009 Dec; 53(3):758-71. PubMed ID: 19654047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are prorocentroid dinoflagellates monophyletic? A study of 25 species based on nuclear and mitochondrial genes.
    Murray S; Ip CL; Moore R; Nagahama Y; Fukuyo Y
    Protist; 2009 May; 160(2):245-64. PubMed ID: 19217347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On gaps.
    Giribet G; Wheeler WC
    Mol Phylogenet Evol; 1999 Oct; 13(1):132-43. PubMed ID: 10508546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S).
    Rix MG; Harvey MS; Roberts JD
    Mol Phylogenet Evol; 2008 Mar; 46(3):1031-48. PubMed ID: 18162409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference.
    Busse I; Preisfeld A
    J Mol Evol; 2002 Dec; 55(6):757-67. PubMed ID: 12486534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation.
    van Beekvelt CA; Kooi EA; de Graaff-Vincent M; Riet J; Venema J; Raué HA
    J Mol Biol; 2000 Feb; 296(1):7-17. PubMed ID: 10656814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular phylogeny and evolution of the deep-sea fish genus Sternoptyx.
    Miya M; Nishida M
    Mol Phylogenet Evol; 1998 Aug; 10(1):11-22. PubMed ID: 9751914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae).
    Read K; Keogh JS; Scott IA; Roberts JD; Doughty P
    Mol Phylogenet Evol; 2001 Nov; 21(2):294-308. PubMed ID: 11697923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules.
    Gillespie JJ
    Mol Phylogenet Evol; 2004 Dec; 33(3):936-43. PubMed ID: 15522814
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.