These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8845972)

  • 1. Neuropeptide changes in cortical and deep gray structures in Alzheimer's disease.
    Roeske LC; Auchus AP
    Rev Neurosci; 1995; 6(4):317-28. PubMed ID: 8845972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical and subcortical neuropeptides in Alzheimer's disease.
    Auchus AP; Green RC; Nemeroff CB
    Neurobiol Aging; 1994; 15(4):589-95. PubMed ID: 7969745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: normal anatomy and alterations in Alzheimer's disease.
    Kowall NW; Beal MF
    Ann Neurol; 1988 Feb; 23(2):105-14. PubMed ID: 2897822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptides in neurological disease.
    Beal MF; Martin JB
    Ann Neurol; 1986 Nov; 20(5):547-65. PubMed ID: 2947536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer's disease.
    Unger JW; Lange W
    Acta Neuropathol; 1992; 83(6):636-46. PubMed ID: 1378987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains.
    Norris PJ; Faull RL; Emson PC
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):36-49. PubMed ID: 8883932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease.
    De Souza EB; Whitehouse PJ; Kuhar MJ; Price DL; Vale WW
    Nature; 1986 Feb 13-19; 319(6054):593-5. PubMed ID: 3003585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer's disease.
    Tong XK; Hamel E
    Neuroscience; 1999; 92(1):163-75. PubMed ID: 10392839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotransmitter changes in Alzheimer's disease: implications to diagnostics and therapy.
    Reinikainen KJ; Soininen H; Riekkinen PJ
    J Neurosci Res; 1990 Dec; 27(4):576-86. PubMed ID: 1981917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-tau based neuronal degeneration in Alzheimer's disease -- an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex.
    van de Nes JA; Nafe R; Schlote W
    Brain Res; 2008 Jun; 1213():152-65. PubMed ID: 18455153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer's brains.
    Westlake TM; Howlett AC; Bonner TI; Matsuda LA; Herkenham M
    Neuroscience; 1994 Dec; 63(3):637-52. PubMed ID: 7898667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.
    Baker-Nigh A; Vahedi S; Davis EG; Weintraub S; Bigio EH; Klein WL; Geula C
    Brain; 2015 Jun; 138(Pt 6):1722-37. PubMed ID: 25732182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides and Alzheimer's disease.
    Gottfries CG; Frederiksen SO; Heilig M
    Eur Neuropsychopharmacol; 1995 Dec; 5(4):491-500. PubMed ID: 8998402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia.
    Nilsson CL; Brinkmalm A; Minthon L; Blennow K; Ekman R
    Peptides; 2001 Dec; 22(12):2105-12. PubMed ID: 11786197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal distribution of intracellular free cholesterol in brains of a Niemann-Pick type C mouse model showing hyperphosphorylated tau protein. Implications for Alzheimer's disease.
    Treiber-Held S; Distl R; Meske V; Albert F; Ohm TG
    J Pathol; 2003 May; 200(1):95-103. PubMed ID: 12692847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of Meynert.
    Sassin I; Schultz C; Thal DR; Rüb U; Arai K; Braak E; Braak H
    Acta Neuropathol; 2000 Sep; 100(3):259-69. PubMed ID: 10965795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galanin and NADPH-diaphorase coexistence in cholinergic neurons of the rat basal forebrain.
    Pasqualotto BA; Vincent SR
    Brain Res; 1991 Jun; 551(1-2):78-86. PubMed ID: 1717107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease.
    Wu CK; Thal L; Pizzo D; Hansen L; Masliah E; Geula C
    Exp Neurol; 2005 Oct; 195(2):484-96. PubMed ID: 16085017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropeptides in Alzheimer's disease: a review and morphological results.
    Bouras C; de St Hilaire-Kafi S; Constantinidis J
    Prog Neuropsychopharmacol Biol Psychiatry; 1986; 10(3-5):271-86. PubMed ID: 2432629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell loss in the nucleus basalis is related to regional cortical atrophy in Alzheimer's disease.
    Cullen KM; Halliday GM; Double KL; Brooks WS; Creasey H; Broe GA
    Neuroscience; 1997 Jun; 78(3):641-52. PubMed ID: 9153647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.