These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8846084)

  • 21. [Possible mechanisms of the anterior limbic cortex influence on the neuron activity of the vago-solitary complex].
    Panteleev SS; Bagaev VA; Liubashina OA
    Ross Fiziol Zh Im I M Sechenova; 1997 Apr; 83(4):33-44. PubMed ID: 12436665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats.
    Qin C; Chandler MJ; Miller KE; Foreman RD
    J Neurophysiol; 2001 Apr; 85(4):1522-32. PubMed ID: 11287476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia.
    Inui K; Nosaka S
    J Neurophysiol; 1993 Dec; 70(6):2205-14. PubMed ID: 7907131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs.
    Seagard JL; Dean C; Hopp FA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):243-53. PubMed ID: 10517815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors.
    Deuchars J; Li YW; Kasparov S; Paton JF
    J Comp Neurol; 2000 Feb; 417(2):233-49. PubMed ID: 10660900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs.
    Yuan SY; Vilimas PI; Zagorodnyuk VP; Gibbins IL
    Neuroscience; 2015 Mar; 288():37-50. PubMed ID: 25549834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uterine cervical distension induces cFos expression in deep dorsal horn neurons of the rat spinal cord.
    Tong C; Ma W; Shin SW; James RL; Eisenach JC
    Anesthesiology; 2003 Jul; 99(1):205-11. PubMed ID: 12826861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.
    Ciriello J
    Brain Res Bull; 2013 Aug; 97():96-103. PubMed ID: 23792336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamate and metabotropic glutamate receptors associated with innervation of the uterine cervix during pregnancy: receptor antagonism inhibits c-Fos expression in rat lumbosacral spinal cord at parturition.
    Ghosh C; Storey-Workley M; Usip S; Hafemeister J; Miller KE; Papka RE
    J Neurosci Res; 2007 May; 85(6):1318-35. PubMed ID: 17304580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain (PET) responses to vaginal-cervical self-stimulation in women with complete spinal cord injury: preliminary findings.
    Whipple B; Komisaruk BR
    J Sex Marital Ther; 2002; 28(1):79-86. PubMed ID: 11928182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Central distribution of afferent pathways from the uterus of the cat.
    Kawatani M; Takeshige C; de Groat WC
    J Comp Neurol; 1990 Dec; 302(2):294-304. PubMed ID: 1705267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histamine depolarizes neurons in the dorsal vagal complex.
    Poole SL; Lewis DI; Deuchars SA
    Neurosci Lett; 2008 Feb; 432(1):19-24. PubMed ID: 18162318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus.
    Qu L; McQueeney AJ; Barnes KL
    J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Galanin inhibits gut-related vagal neurons in rats.
    Tan Z; Fogel R; Jiang C; Zhang X
    J Neurophysiol; 2004 May; 91(5):2330-43. PubMed ID: 14695348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats.
    Ren K; Zhuo M; Randich A; Gebhart GF
    J Neurophysiol; 1993 May; 69(5):1530-40. PubMed ID: 8389827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spino-bulbo-spinal pathway mediating vagal modulation of nociceptive-neuroendocrine control of inflammation in the rat.
    Miao FJ; Jänig W; Jasmin L; Levine JD
    J Physiol; 2001 May; 532(Pt 3):811-22. PubMed ID: 11313448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutaminergic vagal afferents may mediate both retching and gastric adaptive relaxation in dogs.
    Furukawa N; Hatano M; Fukuda H
    Auton Neurosci; 2001 Oct; 93(1-2):21-30. PubMed ID: 11695702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional MRI of the brain during orgasm in women.
    Komisaruk BR; Whipple B
    Annu Rev Sex Res; 2005; 16():62-86. PubMed ID: 16913288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of central 5-HT3 receptors in vagal reflex inputs to neurones in the nucleus tractus solitarius of anaesthetized rats.
    Jeggo RD; Kellett DO; Wang Y; Ramage AG; Jordan D
    J Physiol; 2005 Aug; 566(Pt 3):939-53. PubMed ID: 15905216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypothalamic paraventricular axons projecting to the female rat lumbosacral spinal cord contain oxytocin immunoreactivity.
    Puder BA; Papka RE
    J Neurosci Res; 2001 Apr; 64(1):53-60. PubMed ID: 11276051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.