These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8847245)

  • 1. Increased clearance of lactate after short-term training in men.
    Phillips SM; Green HJ; Tarnopolsky MA; Grant SM
    J Appl Physiol (1985); 1995 Dec; 79(6):1862-9. PubMed ID: 8847245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.
    Burgomaster KA; Heigenhauser GJ; Gibala MJ
    J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate.
    Bonen A; McCullagh KJ; Putman CT; Hultman E; Jones NL; Heigenhauser GJ
    Am J Physiol; 1998 Jan; 274(1):E102-7. PubMed ID: 9458754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic adaptations to training precede changes in muscle mitochondrial capacity.
    Green HJ; Helyar R; Ball-Burnett M; Kowalchuk N; Symon S; Farrance B
    J Appl Physiol (1985); 1992 Feb; 72(2):484-91. PubMed ID: 1559923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of training on lactate production and removal during progressive exercise in humans.
    MacRae HS; Dennis SC; Bosch AN; Noakes TD
    J Appl Physiol (1985); 1992 May; 72(5):1649-56. PubMed ID: 1601768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate turnover at rest and during submaximal exercise in patients with heart failure.
    Katz SD; Bleiberg B; Wexler J; Bhargava K; Steinberg JJ; LeJemtel TH
    J Appl Physiol (1985); 1993 Nov; 75(5):1974-9. PubMed ID: 8307848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of muscle phosphorylation potential to glycolysis during work after short-term training.
    Cadefau J; Green HJ; Cussó R; Ball-Burnett M; Jamieson G
    J Appl Physiol (1985); 1994 Jun; 76(6):2586-93. PubMed ID: 7928887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate of decline in blood lactate after cycling exercise in endurance-trained and -untrained subjects.
    Bassett DR; Merrill PW; Nagle FJ; Agre JC; Sampedro R
    J Appl Physiol (1985); 1991 Apr; 70(4):1816-20. PubMed ID: 2055859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoking increases conversion of lactate to glucose during submaximal exercise.
    Huie MJ; Casazza GA; Horning MA; Brooks GA
    J Appl Physiol (1985); 1996 May; 80(5):1554-9. PubMed ID: 8727539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m.
    Brooks GA; Wolfel EE; Groves BM; Bender PR; Butterfield GE; Cymerman A; Mazzeo RS; Sutton JR; Wolfe RR; Reeves JT
    J Appl Physiol (1985); 1992 Jun; 72(6):2435-45. PubMed ID: 1629100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic determination of glycolytic flux during intense exercise in humans.
    Williams BD; Plag I; Troup J; Wolfe RR
    J Appl Physiol (1985); 1995 Feb; 78(2):483-90. PubMed ID: 7759416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic exercise training in foxhounds. I. Oxygen consumption and hemodynamic responses.
    Musch TI; Haidet GC; Ordway GA; Longhurst JC; Mitchell JH
    J Appl Physiol (1985); 1985 Jul; 59(1):183-9. PubMed ID: 4030562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations in muscle metabolism to prolonged voluntary exercise and training.
    Green HJ; Jones S; Ball-Burnett M; Farrance B; Ranney D
    J Appl Physiol (1985); 1995 Jan; 78(1):138-45. PubMed ID: 7713803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of ventilatory and lactate thresholds to continuous and interval training.
    Poole DC; Gaesser GA
    J Appl Physiol (1985); 1985 Apr; 58(4):1115-21. PubMed ID: 3988668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased reliance on lactate during exercise after acclimatization to 4,300 m.
    Brooks GA; Butterfield GE; Wolfe RR; Groves BM; Mazzeo RS; Sutton JR; Wolfel EE; Reeves JT
    J Appl Physiol (1985); 1991 Jul; 71(1):333-41. PubMed ID: 1917759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic adaptations to short-term training are expressed early in submaximal exercise.
    Green HJ; Cadefau J; Cussó R; Ball-Burnett M; Jamieson G
    Can J Physiol Pharmacol; 1995 Apr; 73(4):474-82. PubMed ID: 7671190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men.
    Coggan AR; Swanson SC; Mendenhall LA; Habash DL; Kien CL
    Am J Physiol; 1995 Mar; 268(3 Pt 1):E375-83. PubMed ID: 7900783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased glucose turnover after short-term training is unaccompanied by changes in muscle oxidative potential.
    Phillips SM; Green HJ; Tarnopolsky MA; Grant SM
    Am J Physiol; 1995 Aug; 269(2 Pt 1):E222-30. PubMed ID: 7653539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.