These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 8847321)
1. A rapid noninvasive blood pressure measurement method for discrete value and full waveform determination. Schnall RP; Gavriely N; Lewkowicz S; Palti Y J Appl Physiol (1985); 1996 Jan; 80(1):307-14. PubMed ID: 8847321 [TBL] [Abstract][Full Text] [Related]
2. Advanced Volume-Compensation Method for Indirect Finger Arterial Pressure Determination: Comparison with Brachial Sphygmomanometry. Matsumura K; Yamakoshi T; Rolfe P; Yamakoshi KI IEEE Trans Biomed Eng; 2017 May; 64(5):1131-1137. PubMed ID: 27429430 [TBL] [Abstract][Full Text] [Related]
3. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. Payne RA; Symeonides CN; Webb DJ; Maxwell SR J Appl Physiol (1985); 2006 Jan; 100(1):136-41. PubMed ID: 16141378 [TBL] [Abstract][Full Text] [Related]
4. Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Brett SE; Guilcher A; Clapp B; Chowienczyk P Blood Press Monit; 2012 Jun; 17(3):132-6. PubMed ID: 22466804 [TBL] [Abstract][Full Text] [Related]
5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
6. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography. Nitzan M; Patron A; Glik Z; Weiss AT Biomed Eng Online; 2009 Oct; 8():28. PubMed ID: 19857254 [TBL] [Abstract][Full Text] [Related]
7. Comparison of noninvasive blood pressure measurement techniques via the coccygeal artery in anesthetized cheetahs (Acinonyx jubatus). Sadler RA; Hall NH; Kass PH; Citino SB J Zoo Wildl Med; 2013 Dec; 44(4):928-35. PubMed ID: 24450051 [TBL] [Abstract][Full Text] [Related]
8. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability. Soueidan K; Chen S; Dajani HR; Bolic M; Groza V Physiol Meas; 2012 Jun; 33(6):881-99. PubMed ID: 22551623 [TBL] [Abstract][Full Text] [Related]
9. A new noninvasive method to measure blood pressure: results of a multicenter trial. Belani K; Ozaki M; Hynson J; Hartmann T; Reyford H; Martino JM; Poliac M; Miller R Anesthesiology; 1999 Sep; 91(3):686-92. PubMed ID: 10485780 [TBL] [Abstract][Full Text] [Related]
10. A new noninvasive device for continuous arterial blood pressure monitoring in the superficial temporal artery. Chin KY; Panerai RB Physiol Meas; 2013 Apr; 34(4):407-21. PubMed ID: 23524512 [TBL] [Abstract][Full Text] [Related]
11. Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds. Nitzan M; Adar Y; Hoffman E; Shalom E; Engelberg S; Ben-Dov IZ; Bursztyn M Sensors (Basel); 2013 Oct; 13(11):14797-812. PubMed ID: 24184918 [TBL] [Abstract][Full Text] [Related]
13. Finger blood pressure during leg resistance exercise. Gomides RS; Dias RM; Souza DR; Costa LA; Ortega KC; Mion D; Tinucci T; de Moraes Forjaz CL Int J Sports Med; 2010 Aug; 31(8):590-5. PubMed ID: 20432200 [TBL] [Abstract][Full Text] [Related]
14. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography. Wu H; Ji Z; Li M Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474 [TBL] [Abstract][Full Text] [Related]
15. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Hsiu H; Hsu CL; Wu TL Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741 [TBL] [Abstract][Full Text] [Related]
16. Automatic blood pressure measurement: the oscillometric waveform shape is a potential contributor to differences between oscillometric and auscultatory pressure measurements. Amoore JN; Lemesre Y; Murray IC; Mieke S; King ST; Smith FE; Murray A J Hypertens; 2008 Jan; 26(1):35-43. PubMed ID: 18090538 [TBL] [Abstract][Full Text] [Related]
17. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Weiss W; Gohlisch C; Harsch-Gladisch C; Tölle M; Zidek W; van der Giet M Blood Press Monit; 2012 Jun; 17(3):128-31. PubMed ID: 22561735 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of 3 methods of blood pressure measurement in obesity]. Julien J; Pagny JY; Jeunemaitre X; Fouqueray B; Plouin PF; Corvol P Arch Mal Coeur Vaiss; 1988 Jun; 81 Spec No():241-5. PubMed ID: 3142414 [TBL] [Abstract][Full Text] [Related]
19. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio. Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147 [TBL] [Abstract][Full Text] [Related]
20. Effect of the shapes of the oscillometric pulse amplitude envelopes and their characteristic ratios on the differences between auscultatory and oscillometric blood pressure measurements. Amoore JN; Vacher E; Murray IC; Mieke S; King ST; Smith FE; Murray A Blood Press Monit; 2007 Oct; 12(5):297-305. PubMed ID: 17890968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]